QUIZ / How Much Can a Robot Lift?

Put a check \boldsymbol{V} in the \square next to the correct answer.

1. What is the rotary force produced on the output shaft of a motor called?
Power
Torque
\square Gearing
2. What is the product of a motor's speed and torque?
Power
\square Stall point
Work
3. What is the condition where a motor encounters so much resistance it cannot turn ?
\square Stall power $\quad \square$ Stall torque $\quad \square$ Torque stop
4. As a motor's resistance is increased, the required current must:
Stay the same
Decrease
Increase
5. As a motor's resistance is increased, the torque must:
Stay the same
Decrease
\square Increase
6. As a motor's resistance is increased, the RPM must:
Stay the same
Decrease
Increase
7. If your test shows that you can lift 14 ounces with a 6 inch lever arm, how many inch/ ounces of torque do you have?
$\square 20$ inch/ounces $\square 84$ inch/ounces $\square 8$ inch/ounces
8. How long is a 6.5 inch lever arm in centimeters? (1 inch $=\mathbf{2 . 5 4} \mathbf{c m}$)
$\square 16.51$
$\square 3.91$
3.19
9. If you needed 12.5 ounces to create stall, how much force did you need in Newtons? (1 ounce $=2.84$ Newtons)
$\square 12.784$
2.84
3.55
10. If your find that your motor stalls when you apply 3.4 ounces of resistance with a lever arm that is 7.25 inches long, what is your torque result expressed in centimeters/ Newton's? Show your work on the back of this test.
\square 24.65 Newton/centimeters
\square 18.415 Newton/centimeters
\square 17.788 Newton/centimeters
