
8 • 1Inventor’s Guide

06
/3

0/
05

programming
table of contents:
what is programming? 8.3
getting ready
 setup overview 8.4
 installing the easyC programming software 8.7
 programming hardware setup 8.13
 download the test code 8.14

programming introduction
 programming options 8.19
 motor and sensor setup 8.20
 using online code to test your robot 8.21
 restoring default code 8.22
 programming sequence 8.23
 program one: writing your first program 8.24
 tips for saving programs 8.26

autonomous programs
 program two: using the motors 8.27
 introduction to sensors 8.33
 using a sensor 8.34
 understanding bumper sensor test code 8.36
 program three: using motors and
 sensors together 8.38
 program four: reversing and turning 8.41

remote control programs
 program five: using the radio control
 transmitter 8.45

8 • 2

programming

Inventor’s Guide

06
/3

0/
05

The MPLAB® C18 C Compiler software is distributed along
with the VexTM Robotics Design System Programming Kit under
license from Microchip Technology Inc.

The Microchip Name and Logo, and MPLAB, PIC, and dsPIC
marks, are registered trademarks or trademarks of Microchip
Technology Inc. in the USA and other countries, and are used by
RadioShack under license.

table of contents, continued:

combining remote control and
autonomous programs
 program six: autonomous
 and remote control 8.47

about easyC
 additional help 8.50

troubleshooting 8.51
 programming strategies 8.52
 compilation errors 8.53
 other errors 8.55

challenges
 keeping count 8.56
 headache! 8.57

afterword 8.58

8 • 3

programming

Inventor’s Guide

06
/3

0/
05

Technically, programming is the process of creating a
sequence of instructions that tell a computational device,
such as the Micro Controller on the Vex robot, how to
perform a task. However, a programmer’s real task is
much broader and more involved than simply listing
instructions for the robot to follow.

The programmer’s true task is to analyze the problem
at hand, and to identify the behaviors that the robot will
need to perform in order to accomplish its task. The
programmer must then break those behaviors down into
simpler and simpler parts until they are at the level that
the robot can understand directly, the level of a single
easyC icon. The programmer will then organize those
icons so that each simple behavior runs at the right time,
and the desired overall behavior will emerge.

There is, of course, always more than one way to solve a
problem, and it’s up to you, the programmer, to determine
what approach works best for your situation. By using
your creative and analytical abilities to the fullest, you
can build and program a robot to conquer any challenge!

what is programming?

3

8 • 4 Inventor’s Guide

programming getting ready

06
/3

0/
05

The Vex programming kit is a combination of
software and hardware components that enable you to
write programs for your robot and to then download them
onto your Micro Controller.

You will program your robot on your computer with
easyC®, the software included on the Programming CD
that comes with the kit.

The Programming Kit includes both a USB-to-serial
cable and a programming module. The USB-to-serial
cable is used to convert your computer’s USB port into
a serial port. The serial end of the cable will then plug
into the programming module, allowing you to download
programs from your computer to the Micro Controller.

The following assembly pages will step through installing
and testing the programming kit hardware and software.

For information and an overview of programming for
Vex, see the programming introduction section.

1 Collect and identify the parts
 from the list of materials below:

materials qty
Vex Programming Kit CD 1
USB-to-serial adapter cable 1
robot interface cable 1
programming module 1

setup overview

8 • 5Inventor’s Guide

programming getting ready

06
/3

0/
05

Vex Programming Kit CD x 1

programming module x 1

USB-to-serial adapter cable x 1

setup overview, continued

robot interface cable x 1

8 • 6 Inventor’s Guide

programming getting ready

06
/3

0/
05

2 Follow this recommended sequence to install the
 software and prepare your robot for programming:

setup overview, continued

1. Install the easyC software
package included on the CD that
accompanies the kit. This includes the
easyC programming software and the
USB-to-Serial cable driver.

2. Attach the programming hardware
to the robot. The USB-to-serial cable
allows the programming module to
interface with any PC through a standard
USB port. Complete the connection
between computer and robot by attaching
the Programming Module and the robot
interface cable.

3. Download and test code on the robot.
Use the provided test program to check
communication between the computer and
the robot.

8 • 7Inventor’s Guide

programming getting ready

06
/3

0/
05

installing the easyC programming software
1 Insert the easyC programming CD into your computer’s
 CD-ROM drive.

2 Your computer should automatically begin installing easyC.
 You should see the following screen. Click Next.

 NOTE: If this screen does not appear, you may need to
 manually run the installer from the CD. You can do this by
 opening My Computer from your desktop or Start Menu and
 finding your CD-ROM drive. You can manually click the folder
 labeled “Install”, then click easyC.exe.

3 At the License Agreement screen, read the easyC licensing.
 agreement. If you agree to the listed terms of use, click “Yes.”

8 • 8 Inventor’s Guide

programming getting ready

06
/3

0/
05

installing the easyC programming software, continued

4 If you need to install to a specific directory, or to a drive
 other than the C: drive, press the Browse button to select an install
 location, and then click Next to continue. Otherwise, just click
 Next to continue.

5 Click Install to begin the installation.

8 • 9Inventor’s Guide

programming getting ready

06
/3

0/
05

installing the easyC programming software, continued

6 easyC will be installed on your computer. This may take a
 few minutes.

7 When the installation is done, you will see this screen. Check the
 box to install RadioShack USB to serial adapter driver. If you
 would like to add an easyC icon to the desktop, check that box as
 well. Click “Finish” to conclude the installation process of easyC.

8 The easyC icon should now be accessible from either your desktop
 (if you checked the box for a desktop icon) or your Start Menu in
 the Programs or All Programs area, under “intelitek easyC for Vex
 controller”.

8 • 10 Inventor’s Guide

programming getting ready

06
/3

0/
05

9 After installing the easyC software, the USB-to-serial cable
 software installation will start. Click Next.

10 The USB-to- serial cable software will be installed on your
 computer. Click Finish to complete your install.

11 Plug the USB-to-Serial cable into your computer

installing the easyC programming software, continued

8 • 11Inventor’s Guide

programming getting ready

06
/3

0/
05

12 You will need to determine the COM port for your USB-to-Serial
 cable. To do this you must open the device manager.

 Single click on “Start” in the Windows Desktop.
 Single click on “Control Panel” text.

 The control panel may be in two different views. If it is in the
 “Category view” click “Performance and Maintenance” and then
 click “System”.

 If the control panel is in “Classic View” simply double click the
 “System” icon.

installing the easyC programming software, continued

8 • 12 Inventor’s Guide

programming getting ready

06
/3

0/
05

Once you are into the “System Properties”, single click on the
“Hardware” tab. Single click on the “Device Manager” button.

Within the device manager do the following:
Double click on “Ports (COM & LPT)”. Under Prolific USB-to-Serial
Comm Port (COMx) make note of the number “x” as it will be needed to
correctly configure your easyC software.

Close the “Device Manager” window.
Close the “System Properties” window.
Close the “Control Panel” window.

installing the easyC programming software, continued

8 • 13Inventor’s Guide

programming getting ready

06
/3

0/
05

programming hardware setup
Connect your robot to your computer.
Now that the software is installed, you are almost ready to download the
Vex test code to your robot. However, you still need to attach your Vex
Micro Controller to your computer using the programming kit hardware.
This setup will allow you to download code from your computer to your robot.

3. Connect the robot interface
cable to the “Serial” port on the Vex
Micro Controller.

1. Attach the serial connector of the
USB-to-Serial cable to the programming
module.

2. Attach the robot interface cable
to the programming module.

8 • 14 Inventor’s Guide

programming getting ready

06
/3

0/
05

download the test code

You are now ready to download the test code!
This code will make sure your robot is set up
properly and ready to be programmed.

1 Open easyC.

2 The evaluation mode screen will appear. Click the “Run in
 Evaluation Mode” button.

 Note: You must register your software to continue using easyC
 after the 30 day evaluation mode is up. To register easyC, click
 the “Get Unlock Code” button and follow the instructions that
 appear.

 To access the registration and licensing screen at a later time,
 click “Registration” in the “Help” menu.

8 • 15Inventor’s Guide

programming getting ready

06
/3

0/
05

download the test code, continued

3 Click “File”, then select “Open Project”.

4 Open the folder called “Test Code”. Find the file named
 “TESTPROGRAM.ECP”. Double-click it.

5 Make sure the terminal window will appear by clicking
 the “Build and Download” menu and click the
 “Loader Setup” option.

6 The “Loader Setup” configuration window will appear. In the
 launch after download section, select “Terminal Window”.
 Click OK.

8 • 16 Inventor’s Guide

programming getting ready

06
/3

0/
05

download the test code, continued

7 You must now set the COM port using the COM port information
 you found in the installing the USB-to-serial adapter section. To
 do this, open the Terminal window.

 Now click on the terminal window icon in the toolbar.

 The terminal window will appear. Within the terminal window, click on
 the “Port Setting” menu. In this menu, click on the COM port you found
 in the installing the easyC programming section. If you were not able to
 locate your COM port, try different COM ports until downloading succeeds.

8 We recommend that you update the Master Code for best performance.
 The Master Code is responsible for the behind-the-scenes work inside the
 Vex Micro Controller. First, turn your robot on.

9 Since you are still in the terminal window, go to “Options” and click
 “Download Master Code...”.

8 • 17Inventor’s Guide

programming getting ready

06
/3

0/
05

10 You will see a confirmation screen appear. Click “Yes”.

11 You will need to choose which version of the Master Code to use to update
 your Vex Micro Controller. Choose Master Code v5 and click “Open”.

 The computer will begin downloading code to your robot.
 This may take several minutes.

12 The terminal window will appear with the message “Download complete”.
 You are now ready to download the test program to the robot!

If you see an error message during
compling or downloading, refer to
troubleshooting, page 50 at the end
of the programming guide

download the test code, continued

8 • 18 Inventor’s Guide

programming getting ready

06
/3

0/
05

13 Click the “Build and Download” icon on the menu bar at
 the top of the screen.

14 You may see a confirmation screen appear. Click “Yes”.
 Your computer will begin downloading code
 to your robot. This may take several minutes.

15 The program will begin to run immediately upon
 finishing the download. You should see the window
 below appear and text will begin to display. The
 program will test each of the motor ports
 (1 through 8) on your robot.

 Any motor plugged into the Motor port bank will
 move briefly when its port number comes up.

 If your robot is configured according to the “logic”
 section of your Vex Inventor’s Guide, for example,
 then you will see motors 2 (right side) and 3
 (left side) respond when those numbers come
 up, because you have motors plugged into those
 two ports.

If you see an error message during
compling or downloading, refer to
troubleshooting, page 50 at the end
of the programming guide

download the test code, continued

8 • 19

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

programming options
To start you off and give you a safe "home base" to return
to while you explore, a few key programs are already
included with the easyC software.

 Code provided for you:
Online Code (page 21):
This code allows you to control the motors and monitor the sensor
values on your robot directly from your computer. The Online code is
a valuable testing and troubleshooting tool.

Default Code (page 22):
This code is the default programming for the Vex robot (the program
it came with fresh out of the box). This code is always available
in case you ever need to return your robot's Micro Controller
programming to its original state and get a fresh start.

The instructions on the following pages will show you how to
load and use these included programs.

When you do begin developing your own robot code, you
will find that your program's behavior will usually follow
one of three main patterns:

 Writing your own code:
Autonomous Code (page 27):
Autonomous code allows a robot to perform behaviors without input
from the radio control transmitter.

Radio Control Code (page 45):
Radio control code allows you to configure the way in which the
radio control transmitter controls the robot.

Mixed Autonomous and Radio Control Code (page 47):
Autonomous code can be integrated with radio control code to
achieve even better robot performance for complex tasks.

The instructions and examples on these pages will guide you
through some basic examples of each type of program behavior.
These examples all use the same hardware configuration, found
on page 13. Please take a moment to ensure your robot is set
up properly.

All of the code written in the
programming guide is compatible with
the Squarebot design of the Vex robot.
Although these programs may be
applied to any Vex robot design, you
may have to make small tweaks (like
reversing the direction a motor spins)
to get a robot other than Squarebot to
perform the programs correctly.

8 • 20

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

motor and sensor setup
Before you begin the programming examples in this
section, please take a moment to ensure your robot’s
hardware is configured properly. All motor and sensor
configurations are based on the Squarebot design
presented in the assembly steps for the first six Inventor’s
Guide chapters.

1

2 Make sure the right motor is plugged into
 Motor port 2 of your Vex Micro Controller.

3 Check to see that the front-mounted bump sensor is plugged into
 Analog/Digital port 6.

4 The rear bump sensor is not used in the following examples.
 Please make sure the wire will not get caught in your robot's
 gears or wheels.

NOTE: For instructions on how to attach motors to
your Vex Micro Controller, please refer to pages 6
and 7 of the “logic” section of your Inventor’s Guide.

Front Bumper Sensor

Left Motor
Right Motor

Make sure the left motor is plugged into
Motor port 3 of your Vex Micro Controller.

8 • 21

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

using online code to test your robot
This code lets you control the robot’s motors and monitor
its sensor inputs directly from your computer. This can be
very helpful in troubleshooting problems with your robot
or computer interface. To use the online code, follow the
steps below.

1 Make sure your programming hardware is connected correctly
 (see programming hardware setup, page 13) and your robot
 is on.

2 Start easyC and select “Online Window...” from the
 “Build and Download” menu.

1.Click “Download Online Code”. This
will begin a download to your robot
immediately.
NOTE: If your download does not
complete successfully, visit troubleshooting
on page 50.

2. You are now ready to begin using your
computer to control your robot. Adjust the
slider bars to make the robot’s motors spin
clockwise or counter-clockwise, or not spin
at all.

If you have set up your robot according to
the motor and sensor setup, then you will
adjust slide bars 2 and 3.

4. The Analog/Digital and Interrupt
windows allow you to monitor the status
of the sensors on each input port, or turn
the output ports on or off. Try pressing
the button on the Bumper Sensor and see
what happens.

3. As you slide in either direction, note
that the number indicator changes. A
setting of 0 means that the your robot’s
motor(s) will spin fastest counter clock-
wise (CCW) and a setting of 255 will spin
the motor(s) fastest clockwise (CW).

8 • 22

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

restoring default code
Should you ever need or want to restore the default
functionality that your robot came with originally,
follow the steps below.

1 Make sure your programming hardware is connected correctly
 (see programming hardware setup, page 13) and your robot
 is on.

2 Select “Download Default Code” from the “Build and
 Download” menu.

3 A confirmation screen will appear. Click “Yes.” The default code
 will immediately begin to download to your robot.

4 Your robot will now function in its “out-of-box” state.
 Use the transmitter to operate the robot with its
 “out-of-the-box” functionality.

NOTE: For more information about the
behavior of the default code, refer to the
following sections of the Inventor’s Guide:
• The Control chapter
• Appendix E - Control Configurations

8 • 23

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

programming sequence
Now that you’ve had some practice downloading and using
the included programs, it's time to learn to write some of
your own! These are the three basic steps you will follow
each time you create a new program for your robot.

Write your program in easyC.
Launch easyC and select “New
Project” from the “File” menu.

Once you have completed
your code, make sure your
programming hardware is set
up properly and the robot is on.
Then select the “Build & Down-
load” option from the “Build &
Download” menu.

Run your code! Immediately
after download, your robot will
start executing the code. To
re-run the code from the
beginning, switch off your ro-
bot, and then switch it back on.

1. Write Code 2. Compile & Download 3. Test

Drag function block icons
into the program window to
write or edit code.

A confirmation screen will
appear. Click “Yes”.

easyC will replace old code
on the robot with new code
you have written.

If you receive an error
message during compile and
download, please refer to the
troubleshooting section.

8 • 24

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

program one: writing your first program

NOTE: All of the example problems in the
“Programming Guide” use the “L2” setting.
This setting determines what functions are
available in the “Function Blocks” window.

NOTE: Be sure to drag
and drop your icons onto
the line in the programming
window between the
“Begin” and “End” icons.

Start simple. For your first program, you will learn how to turn a
single motor on.

1 Launch easyC and select “New Project” from the “File” menu.

2 Select “L2” on the toolbar.

3 In the Function Blocks window (leftmost panel in the
 main window), under the “Outputs” heading, find the
 “Motor - Motor Module” block.

4 Left-click and drag the “Motor - Motor Module” block into the
 program window, between the Begin and End blocks. Release the
 block there.

5 The motor module configuration window will appear. Make sure
 “Motor Number” is 3 and “Clockwise” is selected. Click “OK.”

8 • 25

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

program one: writing your first program, continued

NOTE: If you receive any
error messages, please
refer to the troubleshooting
section on page 50.

Congratulations, you have programmed
your robot sucessfully!

6 Your program should now look like this:

 You are now ready to compile and download
 your first program!

7 Make sure your hardware is set up properly and the robot is
 turned on. Select the “Build and Download” option in the “Build
 and Download” menu.

8 As soon as your program finishes downloading, the left
 motor will turn on, making your robot spin in place. To make it
 stop running, switch off the robot.

9 Now that your robot is off, you can unplug the wire from
 the serial port on the Vex Micro Controller and place your
 robot somewhere safe (for example, the floor). To run your
 program again, switch the robot back on.

10 Save your program as “intro program one” by following
 the steps on the next page.

8 • 26

programming

Inventor’s Guide

06
/3

0/
05

programming introduction

tips for saving programs

Loading Programs

In programming, it is very important to save your programs
frequently. This will allow you to avoid losing work in case
something goes wrong, and let you store programs at important
milestones in their development, should you need to return to
them later.

To save a project in easyC, select “Save Project” from the “File” menu.

The “Save Project As” window will appear.
Enter the name you would like to save the
program as. Be sure to name your programs
such that you can easily tell which program
is which as you write more programs.
“MazeRunner v3 6-7-05” is a good name;
“myprogram” is not.

You may save programs to any directory on
your computer, but we recommend using the
projects directory to make it easier to find
programs later.

As you write more complex programs you may find it useful
to save multiple versions of the same code, so that you can
revert back to an earlier version if your changes cause
undesired behaviors. To save your project under a different
name, select “Save Project As...” from the “File” menu.

To Open saved programs Select “Open Project...” from the “File” menu.

The “Load Project” window will appear.
Find the program you would like to
open, left-click on it, and click “Open”.

The four most recent programs you have
had open may also be opened directly in
the “File” menu.

To move a program:
If you want to move a
program, say from one
computer to another, you
must move both the .BCP
and .ECP files.

8 • 27

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program two: using the motors
In the last section, you learned how to turn on one motor.
Now, you will take things one step further by turning on
both motors to make the robot move forward. In this
section, you will write a program to move your robot
forward for three seconds.

If you recall from the first program, a window with
several motor control options appeared when you dropped
the Motor Module icon into the program diagram. Here is
a more thorough explanation of what all those options do:

 "Motor Module" configuration window

Motor number - This specifies which motor will
be controlled. This number refers to the motor port
numbers (1-8) on the Vex Micro Controller.

With the hardware setup we're using (see page 11), the
left motor is motor number 3, because the left motor is
connected to motor port 3 on the Vex Micro Controller.
The right motor is plugged into Port 2, so it would be
motor number 2.

8 • 28

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

Squarebot has two motors, one controlling each side of
the robot. This combination is enough to perform any
of the basic movement functions. The chart at right
describes the combination of motor movement needed to
perform each maneuver.

Looking at the chart, you can see that to get the
robot to move forward, you must set the left motor to
"Clockwise" and the right motor to "Counter-clockwise".

 "Motor Module" configuration window

Motor direction - This specifies which direction the
selected motor will turn. Clockwise and counter-
clockwise are oriented as if you were looking down
into the hole where the motor shaft goes.

The User Value option allows you to specify an exact
speed and direction value. See the online code section,
page 21, for the meanings of these numbers.

program two: using the motors, continued

To learn more about motors, refer to the Motion
Subsystem Chapter of the Vex Inventor’s Guide.

Left Motor Right Motor

ForwardClockwise Counter-
Clockwise

Reverse

Turn Left

Turn Right

Counter-
Clockwise

Clockwise

Counter-
Clockwise

Counter-
Clockwise

Clockwise Clockwise

8 • 29

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program two: using the motors, continued

4 The “Motor Module” configuration window
will appear. Make sure “Motor Number” is 3
and “Clockwise” is selected. Click “OK.”

5 Repeat steps 2 and 3, dropping the second motor
module icon right below the first. In the "Motor
Module" configuration window, set "Motor Number"
to 2 and select "Counter-clockwise". Click "OK".

Reading from the chart on the previous page, forward movement requires the left motor to turn
clockwise, and the right motor to turn counter-clockwise.

1 Launch easyC and open a "New Project" from the
 file menu.

2 In the “Function Blocks” window, under the
 “Outputs” heading, find the “Motor
 Module” block.

3 Left-click and drag a “Motor Module”
 block into the program window between the
 “Begin” and “End” icons. Release the icon.

Now it’s time to write the program. The goal is to make
the robot move forward for three seconds and then stop.

8 • 30

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program two: using the motors, continued

In the "Function Blocks" window under the
"Program Flow" heading, find the "Wait" block.

Left-click and drag the "Wait" block into the
program window. Drop the "Wait" icon on the line
below the two motor commands so it will occur
after the motors have been turned on.

The "Wait" configuration window will appear.
The "Wait" function is used to make the
program wait a specified amount of time before
proceeding to the next icon.

The default for the "Wait" is one second (1000
milliseconds). You want your robot to wait
for three seconds, so enter 3000 into the
"Wait[msec]" box, and click "OK".

Your program should now look like this :

6 7

8 9

Next, the robot needs to wait three seconds (during which time the motors will remain on).

8 • 31

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program two: using the motors, continued

So far, this program will turn on both motors and wait for 3 seconds. The final step is to
stop both motors.

When the program is finished downloading,
your robot should move forward for three
seconds, then stop.

Save your program as "intro program
two". For a refresher on how to save your
program, see tips for saving programs on
page 26.

Congratulations, you have programmed
your robot to perform a real behavior!

Compile and Download your code.

Repeat steps 2 and 3, dropping the new motor
module block after the Wait block. When the
“Motor Module” configuration window appears,
set “Motor Number” to 3 and select “Stop”.
Click “OK”.

Repeat steps 2 and 3, dropping the new motor
module block just before the End block. When the
“Motor Module” configuration window appears,
set “Motor Number” to 2 and select “Stop”.
Click “OK”.

10 11

12 Your final code should like like this: 13

14

Refer to the Programming
Sequence section, page
23, for detailed steps on
compiling and downloading.

15

8 • 32

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

introduction to sensors
Sensors assist robots in seeing and feeling the physical
world through which they travel. A sensor will tell a
robot one very simple thing about its environment. The
programs that you write will determine how the robot will
react depending on the feedback from a sensor. Sensors
can be placed in two different categories based on the
type of signals they send or receive.

A brief review of sensors:

Digital sensors can distinguish between exactly
two different "states". The exact meaning of the
two states depends on the type of sensor being
used. The robot will interpret information from a
digital sensor as either 1 or 0.

For example the Bumper Switch can read 1
(when it is not pressed) or 0 (when it is pressed).
Similarly the Limit Switch can read 1 (when it is
not pressed) or 0 (when it is pressed).

Analog sensors can provide a range of feedback.
The feedback provided by an analog sensor ranges
from zero to a pre-defined maximum limit for that
particular type of sensor. The robot will interpert
feedback from an analog sensor as a specific
number between 0 to that maximium value.

The Light Sensor and the Line Tracking Sensor,
available separately as sensor accessory kits,
are prime examples of analog sensors. They can
read the relative "lightness" of a tabletop or other
surface as a single numeric value. That value
ranges from zero to one thousand.

2

1

8 • 33

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

A window will appear revealing a blueprint of the
Vex Micro Controller.

The section labeled "Analog / Digital" represents the
sensor ports on your Vex Micro Controller. Left-clicking
the ports switches the port to either digital input or
digital output. Right-clicking these ports toggles them
between analog and digital settings.

Note that the Analog ports must always be together
on the bottom, so switching a port to Analog will
automatically change all the ports below it to Analog as
well.

Due to electrical load limitations on the Analog/Digital
port bank, you cannot configure a port as an Analog
Output.

The Analog/Digital Port Bank on the Vex Micro
Controller consists of 16 ports that can be reconfigured
to work as Analog Input, Digital Input, or Digital
Output ports. The ports must be configured to match the
type of sensor that is plugged into them (digital input
for a digital sensor, etc.).

To configure the Analog/Digital ports, double click the
Input/Output (I/O) icon located on your programming
screen.

Digital ouput ports are used for the Ultrasonic Sensor,
and other 5V digital output devices, such as LEDs.

Digital input ports are used for Bump Sensors, Limit
Switches, Jumpers, and other 5V digital sensors.

Analog inputs are used for the Light Sensor, the Line
Tracking Sensor, and any other 5V analog sensor.

introduction to sensors, continued

Analog Inputs

Digital Inputs

Digital Output

Refer to the Sensors Subsystem
Chapter in the "Inventors Guide" or the
Sensor Accessory Pages which come
with Sensor Accessory Kits for more
information.

8 • 34

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

using a sensor
easyC includes a group of default sensor test files, which will allow you to test
your sensors. First, you will compile and download a sensor test file to your
robot to test it. Then, you will examine all the parts of this code and how they
interact.

To open the test file for the bump sensor, click "Open
Project..." in the "File" menu. Open the folder labeled Test
Code, then click on the file called "BUMPERTEST". Then
click "Open".

BUMPERTEST should open and your program window should
look like the following:

2

1

8 • 35

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

The terminal window is the window used to display any information
gathered from the robot, not only information from the bump sensor. If
you have purchased any of the Sensor Accessory Kits, you will find that
easyC also comes with test programs for all of these, and all the test
programs will function very similarly.

Make sure your robot is set up according to the motor and sensor
guide and your robot is on. Compile and download this code to the
robot. (Refer to the programming sequence section earlier in this
chapter for detailed steps on compiling and downloading.)

using a sensor, continued

At this point, your robot should not be doing anything. The
terminal window should open automatically. If it does not,
click on the terminal window icon in the toolbar.

You should see the window below, with text scrolling across it.
If you press and release the bump sensor, you should see the
Bumper Switch output number change between 1 and 0. Press
and release the bump sensor until you are familiar with the its
operation.

4

5

3

8 • 36

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

understanding bump sensor test code
Let's take a closer look at how the bump sensor test code works.

Variables

Comments

While Loop

Print to Screen

A

B

C

D

1

1. A variable is like a value-holding "container" with
a name (label). Any time you need to store a value
for later use in a program, you will need to use a
variable to store that bit of information. You can
then retrieve the value when it is needed.

3. If you enter a number into a variable’s “Value”
field, the variable will start with that number in
it when the program begins. Here, the variable
“loop” will have the number 1 in it when the
program starts, whereas the variable “bumper”
will have no value in it initially.

2. To modify or create variables, open the
Program Variables window by clicking the
“Program Variables” button on the menu bar.

The screen below should appear:

4. There are many types of variables, because
there are different types of data to hold (a
number versus a letter, for instance). For most
basic Vex applications, you will use the "int"
(integer) type for a variable, because sensor and
timer readings both use this data type.

A

 b u m p e r

 l o o p

8 • 37

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

understanding bump sensor test code, continued

C

D

While Loops - This is a block of code that will
repeat itself as long as the condition inside the
parentheses is true. The condition in the while
loop in this program asks whether (loop ==
1), i.e. whether the value of the variable "loop"
is equal to 1. The code inside of this loop will
run over and over as long as "loop" is equal to
"1". As it turns out, the variable "loop" was set
to a starting value of 1 in the variable window
(see previous page). Since we never change the
value of the "loop" variable, we can reason that
it will always be equal to 1, and so this "while"
statement will repeat its code forever (or at least
as long as the robot is on.)

Print to Screen - This is the code that allows you to see
information in the terminal window. If you double click on the
icon next to the printf() statement, you will see the "Print To Screen"
configuration menu.

The optional “Variable” field lets you display the current
value of a variable in the printed line (it will appear at
the end, after the “Message” text). The “Variable” drop
down menu lets you choose which variable to display. The
“directive” menu tells the computer how to display the
variable’s value. %d tells the computer to use a decimal
format, which works well for int-type variables like a bumper.
The “typecast” menu specifies the type of the variable. This
should usually match the type of variable you specified.

The "Message" field lets you specify
text which you would like to display
in the terminal window.

Comments - Comments allow you to leave notes to yourself and others
about your code. These comments do not affect how the program runs, but
are very important in helping others to understand your code (and reminding
yourself, if you revisit a program several weeks or months later).

B

8 • 38

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program three: using motors and sensors together

Double-click the Variables block in your
program to open the "Variables" window.
Create a new "int" type variable named
"bumper", then click OK.

2

This program will make your robot move forward forever,
unless the bump sensor is pushed in.

Start a new project in easyC by clicking
"New Project" in the "File" menu.

1

In the "Function Block" window, under
the "Program Flow" heading, find the
"While Loop" icon. Left-click on the icon
and drag it into the program window and
drop it between the begin and end icons.

3

4The "While Loop" configuration menu
will appear. Set the condition of the
while loop to be "1==1". This has the
same effect as using a variable set
to 1, like in the sample bump sensor
code. Click "OK".

The "While Loop" will loop for an infinite
amount of time.

2

4

Refer to the using a sensor
section, page 34, for more
information on variables.

8 • 39

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program three: using motors and sensors together program three: using motors and sensors together, continued

7

In the "Function Block" window, under the "Program
Flow" heading, drag the "If-else" block into the "While
Loop" underneath the "Bumper Switch" icon. In the
"If-else" configuration window, the first block asks you
to define the condition (just like a while loop). First,
click the small arrow next to "Add Variable" and select
"Bumper". Then, click the arrow next to "Add Operator"
and select the "==" operation. After the "==" sign, you
will enter the number 1. The if-else condition will now
check whether the variable "bumper" is equal to 1. Click
OK to continue.

8

5 Your program should now look like this.

6 In the "Function Block" window, under the
"Inputs" Heading, find the "Bumper Switch" icon
and drag this into the program window between
the { and } brackets of the "While Loop". Set the
"Digital Input #" to 6 (where the front bumper switch
is plugged in, see page 33 for setup details), and the
"Retrieve to" to the variable you created, "bumper".
Click OK when you are done.

You have now set the variable "bumper" to be updated
with the current value of the bump sensor each time the
loop is run.

If the bump sensor is not pushed in, then you want the
motors to continue moving the robot forward. If the
bump sensor is pushed in, then you want the robot to
stop.

Since we are storing the bumper sensor's pushed/not-
pushed state in the "bumper" variable, that is where the
program must look to see whether it is being pushed. If
the sensor is pushed, "bumper" will have a value of 0. If it
is not pushed, "bumper" will be equal to 1.

We will use an if-else statement to perform this check.

8 • 40

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program three: using motors and sensors together, continued

9 The other half of this program's behavior is that if the
bumper is being pressed in, we want the motors to stop.
Drag in two motor modules between the brackets under
the "else" statement. Configure them so that they form a
stopping behavior (see program two).

8

Check your code to make sure it looks like the code on
the right. Compile and download your code.

Refer to the programming sequence section for detailed
steps on compiling and downloading

10

Test your code. Your robot should now drive forward until
the front bump sensor is hit, at which point the robot will
stop. If you move the robot so that the front bump sensor
is no longer pressed, it will once again move forward.

11

Your code should look like the program on the left. Now, recall that if the bump sensor is not being
pressed in (that is, bumper is equal to 1), we want the robot to move forward. You already know
which combination of icons makes your robot move forward (refer to program two if you need a
reminder). Drag in two motor modules between the brackets under the "if" statement. Set them up
so that your robot will drive forward. Be sure to place the move-forward motor commands in the
section immediately after “if (bumper==1)” because you want them to execute when bumper is
equal to 1.

Your program should now look like this.

Save your program as “intro program three”. We will be
revisiting this program soon! For a refresher on how to
save your program, see tips for saving programs on
page 26.
Congratulations, you have integrated sensor feedback
into your robot behavior!

12

Your program should now look like this.

8 • 41

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program four: reversing and turning
In this section, you will enhance the code from program three by making it back up, turn,
and then continue on its way when the bumper sensor is hit, rather than just stopping.

Open your saved program three file.
Select “Open Project” from the “File”
menu, then click on INTRO PROGRAM
THREE and click “Open”.

1

Before editing the code, save the code as “intro
program four”.

2

For a refresher on how to save
your program, see tips for saving
programs on page 26.

Your program should now look like this.

8 • 42

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program four: reversing and turning, continued

Next, we want to start building the new behavior
into the else statement. Begin with the first action,
backing up (the idea is to move your robot clear of
the obstacle it has encountered).

To do this, drag in two “Motor module” icons
between the brackets of the else statement.
Configure them so the robot starts moving in reverse.

The current programmed behavor is: if the bump
sensor is not being pressed in, the motors turn on;
when the bump sensor is pressed in, the motors turn
off.

We will edit this program so that instead of stopping
when the bump sensor is pushed, your robot will back
up, turn right, and then resume moving forward.
This means that the new turn-backup code will be
replacing the old stop code icons in the
else statement.

Start by clearing away the old code. Delete both of
the Motor Module commands in the else statement.
Right-click the first icon, then select delete from the
menu that appears. A screen will appear asking if
you are sure; click yes. Repeat for the second motor
block.

3

4

See using motors and sensors togeth-
er, page # for the motor directions

Your program should now look like this.

See using the motors on page 27
for the motor directions

8 • 43

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

program four: reversing and turning, continued

Set the amount of time for the robot to move with a “Wait” icon like
you did in program two (page 27). Drag a “Wait” icon into the else
statement under the two “Motor Module” icons. In the “Wait”
configuration window, set the “Wait [msec]” to 1000 (one second.)

5

To make your robot turn right, drag two “Motor
Module” icons below the wait icon, inside the
else statement. Configure them so the robot
turns right.

6

See using the motors on page 27
for the motor directions

8 • 44

programming

Inventor’s Guide

06
/3

0/
05

autonomous programs

To specify the amount of time your robot will turn
right, drag a “Wait” icon into the else statement
under the two “Motor Module” icons. In the “Wait”
configuration window, set the “Wait [msec]” to 500
(which is 500ms, or half a second.) This should make
your robot turn approximately ninety degrees.

Note: The amount of turning produced by this pro-
gram will vary from robot to robot. You may have to
tweak the timing for your robot to turn away from the
wall.

Compile and Download your program.
Refer to the programming sequence section for
detailed steps on compiling and downloading.

Test your code. Your robot should drive forward until the front bump sensor is hit, at
which point the robot will back up, turn right, and then resume forward motion.

Be sure to save changes to your code. Refer to tips for saving programs on page 26.

Congratulations! Your robot now performs an intelligent autonomous behavior!
Let your robot run for a while to see how long it can continue roaming around a
room. Identify areas for improvement in the design, and construct and program
an improved version.

7

Your code should now look like the program above

8

9

10

program four: reversing and turning, continued

8 • 45

programming

Inventor’s Guide

06
/3

0/
05

remote control programs

This section will explain how to incorporate Radio
Control into your programs. Please make sure your RF
receiver module is plugged into the RX1 port of your Vex
Micro Controller. The rest of your robot should still be
configured according to the instructions on page 13.

program five: using the radio control transmitter

Start a new project in easyC by clicking
"New Project" in the "File" menu.

1

In the "Function Block" window, under
the "Program Flow" heading, find the
"While Loop" icon. Drag this into the program
window between the Begin and End icons.

2

Set the condition of the "While Loop"
as "1==1" in order to create a continuous
loop. Click OK.

3

In the "Function Block" window, under the
"RC Control" heading, find the "Tank -
2 motor" icon. Drag the "Tank - 2 motor"
icon into the "While" loop (drop it between the
{ and } icons as shown). This icon causes
the robot to wait for a signal from the radio
control transmitter.

Note that the RC Icons only work when they are
inside a loop. The icon must be executed repeatedly
by the program in order to provide continuous
control. Otherwise it will only give you radio control
for an invisibly brief moment, then move on.

4

8 • 46

programming

Inventor’s Guide

06
/3

0/
05

remote control programs

program five: using the radio control transmitter, continued

The "Tank - 2 Motor" configuration window
will appear. Leave the RX# set to auto.

Set the left channel to "3", indicating the vertical
axis of the left joystick on the transmitter will be
considered the "left" control. Set the right channel
to "2", indicating the vertical axis of the right
joystick on the transmitter will be considered the
"right" control.

In the "Motor Number" section, set "Left Motor" to
"3" and "Right Motor" to "2". This specifies which
motors are being controlled, by the corresponding
joysticks selected in step 6. The motor numbers
are determined by your current motor set up,
which is described in the motor and sensor setup
section on page 38.

5

6

7

Click OK to continue. The icon should appear
between the “Begin” and “End” icons with
“Tank2(0,3,2,3,2);” beside it.

Note: “Tank2” means that you chose the Tank-
style controls with a two motor setup. The
first number, “0”, shows that the program
will automatically use the RX port that has a
signal. The first 3 and 2 following that show the
transmitter channels. The second pair of numbers,
3 and 2, show which port you set the left and right
motors to, respectively.

8

Compile and download your code. (Refer to the “Programming
Sequence” section for detailed steps on compiling and downloading.)

10

Test your code. Your robot should be controllable using the radio
control transmitter. The right joystick will control the right motor
and the left joystick will control the left motor.

11

12 Save your program as “intro program five”. For a refresher on how
to save your program, see tips for saving programs on page 26.

Congratulations, you have programmed your robot sucessfully!!

8 • 47

programming

Inventor’s Guide

06
/3

0/
05

autonomous and remote control programs

program six: combining autonomous and radio control

Open your saved program four. Select “Open
Project” from the “File” menu, then click on
INTRO PROGRAM FOUR.ECP (or whatever you
saved it as) and click “Open”.

Recall that in this program, the motors switched
on autonomously if the bump sensor was not being
pressed in. When the sensor was hit, the robot would
back up, turn, then continue on its way.

Now, you will modify this code so that instead of
driving forward, you will have control of the motors
via the radio control transmitter unless the front
bump sensor is pressed. This means that code to
enable radio control will replace the old
move-forward icons in the if-else statement.

1

Refer to the tips for saving programs section,
page 26, if you are unsure of how to do this.

In this section, we will explain how remote control code
can be combined with autonomous code. In this example
we will adjust the code from program four to include
remote control similar to that in program five.

Your program should now look like this.

8 • 48

programming

Inventor’s Guide

06
/3

0/
05

autonomous and remote control programs

Start by clearing away the old code. Delete
both of the “Motor Module” commands in the
if statement. Right-click the first icon, then
select delete from the menu that appears. A
screen will appear asking if you are sure; click
yes. Repeat for the second motor block.

Next, you want to put tank control identical to the
code you used in program five into the if statement.
To do this, drag the “Tank-2 motor” icon from the
“Function Blocks” window into the program area
and drop it between the { and } of the if-statement.
Set up the “Tank 2-motor” configuration window
as shown.

program six: combining autonomous and radio control, continued

2

3

For more information about putting tank
control into a program, refer to program five
and the using radio control section.

Your program should now look like this.

8 • 49

programming

Inventor’s Guide

06
/3

0/
05

autonomous and remote control programs

Test your code. Your robot should now be controlled by the
radio control transmitter, as long as the front bump switch is not
pressed in.

4

5

Compile and Download your code. Refer to the programming
sequence section for detailed steps on compiling and downloading.

Save your program as “intro program six”.
For a refresher on how to save your program, see tips for saving
programs on page 26.

Congratulations! You have successfully combined autonomous
and radio control code to give you a robot that can be manually
controlled, but has a built-in safety mechanism that backs the
robot up and turns it away from an obstacle when it detects a
collision.

6

Your program should now look like this.

program six: combining autonomous and radio control, continued

8 • 50

programming

Inventor’s Guide

06
/3

0/
05

about easyC

additional help

Help on any specific function block (like a “Wait” block or a
“Timer” block) can be found by dragging the icon you are curious
about into the program window. The configuration window should
appear and there will be a “Help” button in the lower right hand
corner of the window.

For more general information about using easyC, try the help menu
on the menu bar at the top of the screen.

2

1

In addition to the tutorials and instructions provided here
in the programming guide, easyC has its own set of help
files that may help you find the answers you seek.

8 • 51

programming

Inventor’s Guide

06
/3

0/
05

troubleshooting

troubleshooting

There are different problems that you may encounter
while programming with easyC. Here are some of the
more commonly encountered ones, and some possible
solutions.

Programming Strategies:
Describes strategies to help you program more efficiently.

Compilation Errors:
Covers errors in your code.

Other Errors:
Covers download and access right errors.

Download Errors:
Describes errors when downloading your code to the robot.

Access Right Error:
Covers errors that occur when you are not an administrator.

NOTE : If you would like to download
the default code that accompanies your
robot, refer to page 22.

8 • 52

programming

Inventor’s Guide

06
/3

0/
05

programming strategies

troubleshooting

This section will outline useful coding habits that may
help you program more effectively.

Test each section of your program to make sure each one works individually. The program as a whole
can’t work if the parts don’t.

Build your program step by step and test at intervals. Never write out the whole program at once.

Use “Wait” and “Print to Screen” commands at strategic points in your program. This will help you
identify where your errors occur.

Use comments to document what important lines in your code are doing. You aren’t going to
remember every single line of code when you come back to your program in a week, and it helps other
programmers on your team to understand how your code works.

When using loops or if (-else) statements, use the drop-down menus to help write the condition.

Don’t use the “User Code” icon unless you have experience in programming. Using the “User Code”
icon allows you to write your own code that the easyC software cannot help you correct.

easyC can not identify all of the errors you will make, because your incorrect code may still look like
a legitimate program. Programs may compile correctly, yet will not work as you want them to.

If you are using sensors, be sure you connect them to an input port of the correct type. For more on
how to change this refer to the intro to sensors section (page 33).

Save your code often. Also save your code under a different name before making major changes so
you can revert back to an earilier version if needed.

Before beginning to code a program, identify the behaviors you will need, and how they will need to be
arranged. You can do this by simply writing out the steps or using a flow chart like the one below.

3

2

1

4

7

8

9

6

5

8 • 53

programming

Inventor’s Guide

06
/3

0/
05

compilation errors

troubleshooting

Compilation errors are errors in your code that prevent
the Vex Micro Controller from understanding the
program. This section will teach you how to use easyC to
find errors in your code.

If you click on the “Build and Download” button and you have
compilation errors in your code, you will receive this
error message.

1. The output window will
display what type of error
has occurred and the line
number indicating where the
error is located.

2. If you click on the error
in the “Output Box”, the line
that the error is on will be
highlighted in the
“C Programming Window”.
The function block will also
be selected

8 • 54

programming

Inventor’s Guide

06
/3

0/
05

Compilation errors will be displayed in the “Output Window”
according to the following format:

Error [error number] line# (the line number of the error) : description of error

There are several common errors displayed in the “output window”:

1 “Symbol has not been defined”: This occurs when you misspell a
 variable name or if you try to use a variable that has not been
 defined in the Variable Window at the top of the program.

2 “Syntax error” : This occurs most frequently when you do not
 complete the condition in an if statement or loop. For example,
 in “if(loop ==)”, the “loop == “ condition is not a complete
 statement.

3 The output window may also point out some warnings of possible
 errors in your program, even if it compiles correctly. One example
 of this is “expression is always true”, which occurs when you use
 an expression that is always “true” in an “if-else” conditional
 statement (the program warns you that this is suspicious – after all,
 why would you want an if-else statement that never used the else
 block?)

compilation errors, continued

troubleshooting

8 • 55

programming

Inventor’s Guide

06
/3

0/
05

other errors

troubleshooting

Download errors occur when you are attempting to download code
to your robot. These errors can occur because your hardware is not
set up properly or because your software is not configured properly
with your hardware. This section will teach you what the different
download errors mean and how to correct them.

If you are downloading code and you receive this error
message, try the following steps to correct the error.

1 Check to make sure your hardware is set up
 according to the programming hardware page
 (page 13).

2 Make sure your robot is on.

3 Make sure you have properly installed the USB-to
 serial driver and your COM port is set properly
 (refer to installing the easyC programming software,
 page 13).

If the loader freezes up and then closes in the middle of
downloading, try the following steps to correct the error:

1 Check to make sure your robot was not turned off
 during download. Check your battery levels.

2 Be sure all cables are plugged in.

1. Download errors

2. Access rights errors

Access rights errors will occur if you are not set up as an
administator on your computer.

This error message will appear if you are not an
administrator and you attempt to compile a program.

This error message will appear if you are not an
administrator and you attempt to save a file in a
restricted location.

To solve this problem, talk to your system administrator
about getting your user privileges upgraded to include
file write access to the folder on the computer where
easyC is installed. This is “C:\Program Files\Intelitek”
on most machines.

8 • 56

programming

Inventor’s Guide

06
/3

0/
05

keeping count

challenges

Use this space to draw a flowchart and write your solution:

The code solution to the
challenge can be downloaded
from www.Vexrobotics.com

Build and program a wandering robot that will run
straight until it hits a wall, then back up and turn, all
the while keeping track of the number of walls it has hit.
After hitting a wall for the third time, the robot must
come to a complete stop.

The robot must begin facing a wall.1 1

Once it hits a wall, it must reverse for
1 second, then turn or pivot right, and
then resume traveling forward.

2

2

The program should stop after the third
wall collision (it can back up and turn,
but should not move forward).

3

8 • 57

programming

Inventor’s Guide

06
/3

0/
05

headache!

Use this space to draw a flowchart and write down ideas:

challenges

The code solution to the
challenge can be downloaded
from www.Vexrobotics.com

Use a bumper switch to help you navigate a maze by
“feeling” your way through. You will be able to see the
maze ahead of time to plan your route, but your robot must
use the bumper switch sensor to detect walls.

12

3

Begin

End

4

1 You will be able to see the maze
ahead of time to plan a route.

2 Your robot must be able to move
from the starting area to the finish
area without human assistance
once turned on.

The robot must use wall collisions
to guide it through the maze. It
cannot navigate by timed move-
ments alone.

Hint: Like most long sequences
of behaviors, this one is easier to
program if you write and test your
program one segment at a time.

3

4

