RESOURCES DC CIRCUITS Current Flow

STUDENT

QUIZ / Current Flow

RESOURCES DC CIRCUITS Current Flow

STUDENT

QUIZ / Current Flow

NAME		DATE	CLASS PERIOD)	
V = I x R 8.	 Your robot is powered by two 1.5 V batteries in series. If your robot is drawing 0.1 amps of current for 10 s, how much work does your robot do? Use the formulas at left. 				
	<u>o 3 J</u>	o 0.03 J	o 1.5 J		
$Work_1 = F \times d$	If a robot is being powered I to the robot is 2 x 1.5 V or 3 10s = J.	by two 1.5 V batter V. Using the formu	es in series, the total voltage s la Work ₂ = V x I x t, Work = 3 V	upplied x 0.1 A x	
$lork_2 = V \times I \times t$ 9.	What will happen if a 12 volt b	attery is used on a	S volt motor?		
	o Destroy the motor				
W	o Make the motor run	very slow			
Power ₁ = $\frac{t}{t}$	o The motor will not ru	in			
	The motor will draw excession	ve current from th	e battery and be destroyed.		
$Power_2 = V \times I $ 10 .	0. The amount of work done by your robot in this lab is directly proportional to: (check all that apply)				
	o The friction of the ra	mp			
	o Current draw of	the robot			
	o The battery volt	age of the robo	<u>.</u>		
	o The number of s	seconds it takes	the robot to go up the ram	p	
	o The total resistance	of the robot			
	From the Work2 equation, v current, voltage and time.	ve see that the wo	k done by one's robot depends	s on	
11,	1. What will happen to the current draw on the motor if the incline is increased from 5° to 30°?				
	o Remain the same	o Decrease	<u>o Increase</u>		
	As the robot does more work by going up a steeper incline, the current draw increases.				
12	What symbol setting should t	he multimeter be or	to measure direct current?		
	<u>o Ā</u>	ο ĩ	o Ã		
	The correct symbol is the A measures alternating curre	with the flat line c nt, not direct.	ver it. The A with the curve ove	∍r it	
13.	13. What will happen to the current reading when the drive gear is much larger than the driven gear?				
	o Current reading will	stay the same			
	o Current reading	will increase			
	o Current reading will	decrease			
	The current readings will in Student" under the Factors	crease. This is cov Affecting Current	vered in "Overview / Guides / No Draw heading.	ote to the	

RESOURCES DC CIRCUITS Current Flow

STUDENT

QUIZ / Current Flow

NAME	DATE	CLASS PERIOD			
	14. List one factor that affects the current drawn in your motor. Explain why this factor affects current.				
	This is covered in "Overview / Guides / Note to the Student" under the Factors Affecting Current Draw heading. There are many factors there including terrain, gear ratio, wheel size, weight and battery voltage.				
	Quiz Part 2 example problem:				
	If 25 nano-Coulombs flow through a wire in 5 microseconds, determine I, the current flow.				
	Solution:				
	Using Equation 3 from the notes, we have:				
	$I = q/T = (25x10^{-9})$ Coulombs/(5x10 ⁻⁶) seconds = 5 x10 ⁻³	amperes = 5 ma			
	15. How long does it take for 40 u-Coulombs to flow through a u-amps?	a wire if the current flow, I, is 100			
	Modifying Equation 3, we have:				
	$T = q/I = (40x10^{-8})/(100x100^{-8})$ amperes = 0.4 seconds =	400 m-sec.			
	16. How much charge does it take for 800 ma of current to flows in 200 u-seconds?	ow through a wire if the charge			
	Modifying Equation 3, we have:				
	$q = TI = (200 \times 10^{-6})(800 \times 10^{-3}) = 160 \text{ u-Coulombs}$				

STUDENT

QUIZ / Current Flow

NAME		DATE	CLASS PERIOD		
	17. An electron has a charge of 1.602 x10 ⁻¹⁹ convire in 50 nano-seconds, determine I, the cur	ulombs. If 200 billion e rrent flow.	electrons flow through a		
	Solution:				
	Given: $e_{-} = 1.602 \times 10^{-9}$ (Charge of an electron	on)			
	N = 200 billion = 200 x10 ⁹ (The number of electrons) q = Ne- = $(1.602 \times 10^{-9})(200 \times 10^{9}) = 3.204 \times 10^{-8}$ Coulombs				
	Using Equation 3, we have:				
	I = q/T = 0.6408 amperes = 640.8 ma				
	18. An electron has a charge of 1.602 x10 ⁻¹⁹ co wire in 100 nano-seconds to generate 250 m	oulombs. How many e a of current?	lectrons will flow through a		
	Solution:				
	Recall: e- = 1.602 x10 ⁻⁹ (Charge of an electr	on)			
	N = The number of electrons				
	Using Equation 3, we have:				
	$I = 250 \times 10^{-3} = 0.25$ amperes				
	Solving for N, we have:				
	N = = 156.05 x10 ⁹ electrons				