
ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In this lesson, we’re going to investigate the meaning of this curious line of code:

 n = n + 1;

Reading it in the normal mathematical sense, this is a contradiction... an impossibility. There’s
no number out there that can be one more than itself. Of course, that would be misreading what
the line says entirely. In fact, this is not an equation, but a command in ROBOTC, and a perfectly
sensible one, when you understand what it’s really saying.

Line Counting Counting

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Line Counting Counting (cont.)

In this lesson, we’re going to learn how to use a robot to count. Using code we have already
discussed, along with some new stuff, we will find out what we can do with this “line
counting” concept.

Let’s back up a step. Where have we seen something like this before?

motor[motorC] = 50;
...sets a motor power setting to the numeric value 50.

motor[motorB] = SensorValue(soundSensor);
...sets a motor power to match the value of a sensor reading.

thresholdValue = sumValue/2;
...sets one variable to be equal to another variable divided by two.

In all of these situations, the command is to set a value to something. To the left of the equal
sign, is the variable or other quantity that is set. To the right of the equal sign, is the value that it
will be set to.

n = n + 1; is part of the same family of commands. It is clearly not meant to say that “n is equal
to n plus one,” but rather that the program should set n equal to n plus one. How does that work?
Well, if n starts at zero, then running this command sets n to be equal to 1. Let’s substitute 0 for
the n on the right side and see what happens.

n starts at 0, so...

n=n+1; becomes n=0+1;

n is set to 1, so now...

n=n+1; becomes n=1+1;

... and n is set to 2, so now...

n=n+1; becomes n=2+1;

And so on! Each time you run the command n=n+1; the value in the variable n is increased by 1!

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

When would this be useful? Let’s examine the warehouse task in more detail.

To get around the warehouse, the robot needs to count lines. Every time you reach a new line,
you add one to the number of lines that you’ve seen. In command form, that looks like:

count = count + 1;
The new count equals the current count plus one. Commands of the form n = n + 1, like this
count = count + 1, add one to the value of the variable each time the command is executed, and
can be used over and over to count upwards, leaving the current count in the variable each time.
By running this line once each time you spot an object that you want to count, you can keep a
running tally in your program, always stored in the same variable. Your robot can count lines!
This will come in quite handy for this project.

Line Counting Counting (cont.)

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In this lesson, we’re going to start teaching the robot to count lines. The eventual goal of this
robot is to have it travel to a certain destination by counting special navigation markers on
the floor.

We have one piece of the puzzle now, we know how to count.

What we still need to figure out are:

When to count

When NOT to count

How to stop, based on the count

•

•

•

1a. Open and Compile
File > Open and Compile
to open up the program
Autothreshold.

1c. Open Autothreshold
Press the Open button to open
the program.

1b. Find Autothreshold
Find Autothreshold and click on
the program previously saved.

1. Start with your automatic threshold calculation program, the one that asks you to push the
button over light and dark, and then tracks the line.

Line Counting Line Counting (Part 1)

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

2. For this lesson, this program will be saved as, “Linecounter”.

2a. Save As
Select File > Save As to save
your existing code to a new
file, with a new name.

2c. Save the program
Press the Save button to save the
new program.

2b. Name the program
Name the new program file
“Linecounter”.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
This is what the program should look like before modifications.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

The existing program already has the sensors configured, and finds a nice threshold value so
we don’t have to worry about either of those. The task at hand, counting lines, involves looking
for light or dark just like the Line Tracker did. But unlike the line tracker, our robot only needs to
move straight forward, so let’s convert over the parts of the code that do steering.

ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3a. Modify this code
Change both motorB
and motorC to equal
power levels. We will
use 50.

3b. Delete this code
Delete both these sections of code,
which steer the robot in the original
line tracking program.

Line Counting Line Counting (Part 1) (cont.)

3. Change the first movement portion of the Line Tracking if-else statement to just make the robot
go straight instead. Remove the other movement-related commands.

ROBOTC

 Line Counting • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
This is what the program should look like after modifying the steering.

Line Counting Line Counting (Part 1) (cont.)

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 }

 else
 {

 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

ROBOTC

 Line Counting • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

4. Now let’s add the lines to turn on PID control for both motors to help keep the robot moving in
a straight line. If you need a refresher you can review PID in the improved movement section.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 }

 else
 {

 }

 }

}

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Line Counting Line Counting (Part 1) (cont.)

4. Add this code
Add these two lines to turn on PID
control for both motors.

5. Because we do want to look at light and dark for counting purposes, let’s keep the light sensor
if-else statement in place.

ROBOTC

 Line Counting • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

6. We’re definitely going to be counting (lines), and we don’t have a counter variable, so let’s
create one. It has to be an integer – it’s a numeric value, and it won’t have decimals – and
we’ll call it “countValue”. After the name, add “= 0” before the semicolon. This statement
declares an integer named “countValue” and assigns it an initial value of 0.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);

 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Line Counting Line Counting (Part 1) (cont.)

6. Add this code
Declare an integer variable
named “countValue”, with a
value of 0. This variable will
be used to count the number
of lines we have passed.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
Now, let’s see what we should be doing in terms of counting. Suppose the robot starts running, and...

Here’s a line! Add one to our count

Robot crosses first line
The robot has crossed its first line, so the line
count should now increase to one.

Light Sensor runs over light
Since the robot is running over light, it hasn’t reached
a line, and the line count should remain at zero.

Robot crosses second line
The robot has crossed its second line, so the
line count increases again to two.

Light Sensor runs over light
The robot is running over light again, and
the line count remains at one.

And so on. It looks like dark means a line, and that’s when we want to count.

Count when dark... “If the light sensor value is lower than the threshold, count.” The adding-one
code should go in the part of the code that is run when the value of the Light Sensor is below
the threshold: inside the {body} of the if-else statement starting on line 38.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. Put the add-one code countValue = countValue + 1; in the “seeing dark” part
of the if-else statement. The “else” block of code should remain empty so that the robot
does nothing when it’s over a light area, just like we want.

7. Add this code
Insert the add-one code here, so that the robot
adds one to the line count whenever it sees dark.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
This is what the program should look like after adding the add-one code.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

End of Section
We’ve written code that tells the robot when to count.
Still to come: testing and debugging the program.

Line Counting Line Counting (Part 1) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

1. Before we test, we need to add something that will help us determine whether the program
is working or not, before it just reaches the end and erases all the data. Since we have the
debugger on our side, there’s a trick we can use. On the very last line of your program, click
once in the grey bar between the code and the line number. A red circle will appear, marking
the creation of a breakpoint.

A breakpoint is a spot you designate in your code where the robot should automatically go into a
time-stop state, as it did while using the step command. The advantage to using a “breakpoint”
rather than the “step” approach allows your robot to run the program at normal speed until the
program reaches the break point.

2. Compile and Download the program to the robot to begin the test!

2. Compile and Download
Robot > Compile and
Download Program

In this lesson, we’re going to learn how to use a breakpoint to debug the line
counting program.

1. Add breakpoint
Place your cursor next
to the last curly brace,
then click in the grey bar
to create a breakpoint,
marked by a red circle.

Line Counting Line Counting (Part 2)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

4b. Find darkValue
Wait 1 second, position the robot with the Light
Sensor over the first line and positioned to go
forward, and press the Touch Sensor again. As
soon as the Touch Sensor is pressed, the robot will
begin to move forward, counting lines as it goes.

4a. Find lightValue
Push the Touch Sensor while the robot’s
Light Sensor is over a light area.

3. Open up the Debugger, then select both the Global Variables and the NXT Devices options so
both these windows are visible.

3a. View Debugger
Select Robot > Debugger to open
up the Program Debug window.

3b. View Debugger Windows
Select Robot > Debug Windows
and select both Global Variables
and NXT Devices.

4. Start the program, then follow the prompts on the NXT screen to press the Touch Sensor to
store the values of light and dark surfaces in the variables lightValue and darkValue. The
second time you press the Touch Sensor, the robot should begin moving forward.

Line Counting Line Counting (Part 2) (cont.)

ROBOTC

 Line Counting • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint
Since the line tracker we originally borrowed the code from was the Timer version, this behavior
should run for a set amount of time, then hit the breakpoint. The program state freezes when it
hits the breakpoint, so the motors keep running – they were running when we froze the program,
so they’ll keep running because there’s nothing to tell them to stop.

5. Observe the variables window, and find the value of your variable “countValue”, which should
be the number of lines your robot passes over. The number of lines the robot has passed
appears to be... negative 13,487.

5. Observe “countValue”
Observe the value of the last
variable, “countValue” in the
Global Variables window.

Line Counting Line Counting (Part 2) (cont.)

Breakpoint
This dialog tells you
that your program
has reached the
breakpoint you set.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

6. Run the program again with the robot connected, this time watching to the value of the
variable “countValue” in the variable window as the robot runs.

Checkpoint
Look what happens to the variable “countValue.” It doesn’t move when we’re over light, which
it shouldn’t. But when you place it over the dark line and press the Touch Sensor it counts more
than once – thousands of times, actually. The number gets so big that it confuses ROBOTC and
wraps around into the negative numbers!

Counting more than once is the same problem we had when we were trying to detect the Touch
Sensor press to read Thresholds! Remember back when the program zipped through both
readings too quickly because the Touch Sensor was still held when the program reached the
second check?

Line Counting Line Counting (Part 2) (cont.)

Flashback: Counting too fast
Back in the Automatic Thresholds section, you had another situation where the robot
counted too many times, too quickly, and did not work correctly as a result.

ROBOTC

 Line Counting • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

It looks like the same thing is happening here, but about 10,000 times worse. Per second.

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

If (condition)
The robot checks the condition.
When it is true, it adds one to the
value of “countValue.”

Line Counting Line Counting (Part 2) (cont.)

Let’s look at what happens when the robot crosses a dark line. It checks the if-condition, which is
true, and adds one to the variable “countValue”.

ROBOTC

 Line Counting • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

 else
 {

 }

 }

}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Then it skips the else, and moves back up to the top of the while() loop.

Top of the while() loop
After adding one to “countValue”,
the robot moves back to the top
of the while() loop.

If (condition) again...
The robot again checks the
condition, which is still true,
and adds one to the value
of “countValue.”

Then it does what it did before: it checks the condition... which is still true even on this second
pass because the sensor is still over the line, and adds another 1 to “countValue”.

Line Counting Line Counting (Part 2) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

End of Section
We’ve found the problem: the robot counts one black line thousands of times when we only
want to count the line only once. In the next lesson you will use a variable to put a stop to the
double counting.

The robot keeps cycling through the while loop over and over again, and keeps adding one
to “countValue” every time it does. And this is the problem: the robot is seeing, and hence
counting, the same black line for what seems to be thousands of cycles in the amount of
time it takes to pass over it.

Line Counting Line Counting (Part 2) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

We need to find some way to make the robot count the line only once.

In the Autothreshold program, we solved the problem by putting in a one second delay to allow
you to take your finger off the button before the program moves to the next line of code.

Line Counting Line Counting (Part 3)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

A one-second pause worked well for the button-pushing situation, but is it really appropriate
here? What if the lines are close together? The robot could miss a lot of lines in that one second
gap. Or what if the line is really huge? It would still count more than once.

It looks like we’ll have to come up with something more creative. We could look at this line as
being made up of several distinct regions: one light region where you come in from, a dark
region, and then another light region.

Line Counting Line Counting (Part 3) (cont.)

Single thick line
If a line is thick enough for whatever reason,
the robot may still not get past it before
counting again, and it would be counted twice.

Multiple close lines
The robot should count all of these lines
separately, but could potentially drive over all of
them during the “don’t count again” period, and
end up counting them as only one line.

Anatomy of a Line
A line is composed of a
light region, followed by a
dark region, followed by
another light region.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Why not let the robot count only on the transition from light to dark? If you look at this picture
there is only one light to dark transition per line. And exactly one. So you can count every line
and never count the same line twice. What we want to count is not “seeing dark”, but “seeing
the transition to dark.”

What does this transition look like? The transition is when you used to be seeing light, as in the
picture below left, and now are seeing dark, as in the picture below center.

But how do we keep track of that? What we need is a variable to store the color of the region
that we saw last.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

2
3
4
5
6
7
8
9

10
11

1. Modify code
Declare a new integer variable
called “lastSeen”.

Checkpoint
We’ll decide now that “lastSeen” is going to have 0 in it if the last thing it saw was dark, and
a 1 in it if the last thing it saw was light. This is an arbitrary choice, but one that must be kept
consistent after this point!

0 = dark
1 = light

1. Declare a new integer variable, int, and call it “lastSeen”.

In this lesson, we’re going to learn how to make our line counter count a line only once, by
counting only the transition to dark. A variable will be used to keep track of the previously
seen color.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;
 lastSeen = 0;

 }

 else
 {
 lastSeen = 1;
 }

 }

}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

2. Modify code
Assign the variable
“lastSeen” the value
of 1 just before the
while() loop.

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;
 countValue = countValue + 1;

 }

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2. Just before the while() loop, start the value of lastSeen at 1 (which is “light”) so that we are
able to count the first line

2. Modify code
Assign the variable
“lastSeen” the value
of 1 just before the
while() loop.

3. The rest of the program needs to make sure this variable stays up to date. In the block of code
corresponding to the “dark” area of the if-else loop, add the line “lastSeen = 0;” And in the
block for the “light” area (inside the else block), add the line “lastSeen =1;”.

3a. Modify code
Assign the variable
“lastSeen” the value
of 0 in the “dark” area
of the if-else structure.

3b. Modify code
Assign the variable
“lastSeen” the value
of 1 in the “light” area
of the if-else structure.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

4. Save, compile and download the program to the robot to see how we are doing. Bring up
the Debugger, the Global Variables Window and the NXT Device Control Display.

Checkpoint
Run the robot, but pick it up and hold it over either the dark or light areas. Whenever
it’s over the dark area, “lastSeen” should be 0. Whenever it’s over the light area, “lastSeen”
should be 1.

Line Counting Line Counting (Part 3) (cont.)

Debuggers
Compile and Download
the program, then make
sure the debugger
windows are still open.

Robot held over Dark
When the Light Sensor is held over the
dark line, the lastSeen variable in the
Global Variables window should be 0.

Robot held over Light
When the Light Sensor is held over the
light area, the lastSeen variable in the
Global Variables window should be 1.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

5. A light-to-dark transition will be marked by a “last seen” color of light, and a “currently
seeing” color of dark. Therefore, the counting must be in the seeing-dark portion of the code,
but should also check that the “lastSeen” value is light, a value of 1.

 Create an if-else structure (beginning with the line “if (lastSeen == 1)” around the existing
code. The “else” portion is actually optional, and is left out here to save space.

5. Modify code
Create an if structure
which checks if the
variable “lastSeen”
is equal to 1. The
add-one code should
become its {body}.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

6. Save, download, and run. Watch the count variable in your program as the robot travels
over lines, and with any luck, the count will match the number of lines!

Line Counting Line Counting (Part 3) (cont.)

Success
The robot now travels for 3 seconds, counting
appropriately only when it has reached a new
line (a light-to-dark transition).

Observe the value of “countValue” in the
debug window for each position of the robot
shown below.

ROBOTC

 Line Counting • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Checkpoint. This is what the program should look like after all your modifications.

Line Counting Line Counting (Part 3) (cont.)

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

End of Section
We’ve covered the first two items we need for our line counting program.
In the next section, we’ll learn how to stop.

Line Counting Line Counting (Part 3) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);
 lastSeen = 1;

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

The Line Tracking code we originally borrowed was the Timer version, which works by
running while the elapsed time value is less than the time limit. Right now it loops until
3000 milliseconds have passed. What we really want is for this robot to move until it has
passed 7 lines.

In this lesson, we’re going to learn how to make our line counter stop when it has passed over
a specific number of lines, instead of stopping after a specific amount of time has elapsed.

Line Counting Line Counting (Part 4)

While loop
The (condition) in the
while loop determines
whether the move-
and-count behavior
continues, or whether
the program moves on
to the next behavior.

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

 ClearTimer(T1);
 lastSeen = 1;

 while (countValue < 7)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1. Replace the “Timer < 3000” condition with “countValue < 7”.

1. Modify code
Change the condition
the while() loop checks
from “Timer < 3000”
to “countValue < 7”.

2. Make sure your table has at least seven lines on it.

Line Counting Line Counting (Part 4) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

3. Save, download and run.

Line Counting Line Counting (Part 4) (cont.)

ROBOTC

 Line Counting • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Line Counting Line Counting (Part 4) (cont.)

End of Section If this is what your program looks like, you’ve finished the line counting program!

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;
 int countValue = 0;
 int lastSeen;

 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);
 lastSeen = 1;

 while (countValue < 7)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=50;
 motor[motorB]=50;

 if (lastSeen == 1)
 {
 countValue = countValue + 1;
 lastSeen = 0;
 }

 }

 else
 {
 lastSeen = 1;
 }

 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

