
Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Now that you’re familiar with a few of the key NXT sensors, let’s do something a little more
interesting with them. This lesson will show you how to use the Light Sensor to track a line.

The trick to getting the robot to move along the line is to always aim toward the edge of the line.
For this example, we’ll use the left edge.

Track the left side
The Light Sensor will be positioned
and programmed to track the left
side of the black line.

Put yourself in the robot’s position. If the only dark surface is the line, then seeing dark means you
are on top of it, and the edge would be to your left. So you move toward it by going forward and
left by performing a Swing Turn.

Line Tracking Basic Lesson

Swing turn left
Therefore, turn left toward the edge of the line.

Light Sensor sees dark
The robot is over the dark surface. The left
edge of the line must be to the robot’s left.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The only time we should see Light is when we’ve driven off the line to the left. If we need to get to
the left edge, it’s always a right turn to get back to line. Make the forward-right turn as long as
you’re seeing Light, and eventually, you’re back to seeing Dark!

Put those two behaviors in a loop, and you will see that the robot will bounce back and forth
between the light and dark areas. The robot will eventually bobble its way down the line.

Track the line:
The robot will perform the line track
behavior to the end of the line

Line Tracking Basic (cont.)

Swing turn right
Therefore, turn right toward the edge of the line.

Light Sensor sees light
The robot is now over the light surface. The left
edge of the line must be to the robot’s right.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

In this lesson you will learn how to use the light sensor to follow a line, using behaviors similar
to the Wait for Dark (and Wait for Light) behaviors you have already worked with.

1. Start with a new, clean program.

2. The first step is to configure the Light Sensor. Go to the Motors and Sensors Setup menu.
 Click “Robot” then choose the “Motors and Sensors Setup”.

1. Create new program
Select File > New to create a
blank new program.

2. Open “Motors and Sensors Setup”
Select Robot > Motors and Sensors Setup to
open the Motors and Sensors Setup menu.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

3. Configure an Active Light Sensor named “lightSensor” on Port1.

4. Press OK, and you will be prompted to save the changes you have just made. Press Yes to save.

5. Save this program as “LineTrack1”.

3b. Name the sensor
Name the Light Sensor on
port S1 “lightSensor”.

3c. Set Sensor Type
Identify the Sensor Type as a
“Light Active” sensor.

4. Select “Yes”
Save your program when prompted.

5a. Name the program
Give this program the name
“LineTrack1”.

5b. Save the program
Press Save to save the program
with the new name.

3a. Open A/D Sensors Tab
Click the A/D Sensors tab

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

6. Let’s start by putting the “easy” stuff in first: task main, parentheses, and curly braces.

Checkpoint
Your program should look like the one below. The Light Sensor is configured, and we can now
start with the rest of the code.

task main()
{

}

2
3
4
5
6

7. Recall that in order to seek the left edge of the line, the robot must go forward-left for as
long as it sees dark, until it reaches the light area. Similar to the Forward Until Dark behavior
you wrote earlier, this uses a while() loop that runs “while” the SensorValue of the
lightSensor is less than the threshold (which you must calculate as before).

2
3
4
5
6
7
8
9

10
11
12
13

task main()
{

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

}

7b. Add this code
Instead of moving forward like
Forward Until Dark, the robot
should turn forward-left.

Left motor stationary, with right
motor at 80% creates this motion.

7a. Add this code
This while() loop functions like
the Forward Until Dark behavior
you wrote earlier.

It will run the code inside the braces
as long as the SensorValue of
the lightSensor is less than the
threshold value of 45.

6. Add this code
These lines form the main body
of the program, as they do in
every ROBOTC program.

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

8. The robot has presumably driven off the line, and must now turn back toward it. The robot
must turn forward-right as long is it continues to see the light table surface (i.e. until it sees the
dark line again).

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

task main()
{

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

}

8a. Add this code
This while() loop is very
similar to the one above it,
except that it will run the code
inside it while the light sensor
sees light, rather than dark.

8b. Add this code
This turns the robot forward-right by
running the left motor at 80% while
holding the right motor stationary.

Checkpoint
The code currently handles only one “bounce” off and back onto the line.
However, to track a line, the robot must repeat these two operations over and over again.
This will be accomplished using another while() loop, set to repeat forever. “Forever” will
be achieved in a somewhat creative way...

Discussing Concepts Using Pseudocode

Often when discussing programs and robot behaviors, it is useful for programmers
to use language that is a mixture of English and code. This hybrid language is
called “pseudocode” and allows programmers to discuss programming concepts in
a natural way. Pseudocode is not a formal language, and therefore there is no one
“right” way to do it, but it often involves simplifications to aid in discussion.

(continued on next page...)

Sensing

Line Tracking • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Basic (cont.)

9. Create a while() loop around your existing code. Position the curly braces so that both
of the other while loop behaviors are inside this new while loop. For this new while loop’s
condition, enter “1==1”, or “one is equal to one”.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

task main()
{

 while(1==1)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

}

9. Add this code
The new while() loop goes
around most of the existing
code, so that it will repeat
those behaviors over and over.

The loop will run as long as
“1==1”, or “one is equal
to one”. This is always true,
hence the loop will run forever.

Discussing Concepts Using Pseudocode (cont.)

The program on this page might
look like this in pseudocode:

repeat forever
{
 while(the light sensor sees dark)
 {
 turn forward-left;
 }
 while(the light sensor sees light)
 {
 turn forward-right;
 }
}

Sensing

Line Tracking • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

End of Section
Now that your program is complete, check to see if it works. Save your program, and then
download it to the robot and run. If you see that your robot is moving off the line in one direction,
it means that your threshold is set wrong. The robot thinks it’s seeing dark even on light, or light
even on dark, and it’s just waiting to see the other, which probably won’t happen if the values are
wrong. If, however, you see your robot bouncing back and forth, moving down the line, then your
robot is working correctly, and it’s time to move on to the next lesson.

Line Tracking Basic (cont.)

Sensing

Line Tracking • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In the previous lesson we learned the basics of how to use the light sensor to follow a line. That
version of the line tracker runs forever, and cannot be stopped except by manually stopping the
program. To be more useful, the robot should be able to start and stop the line tracking behavior
on cue. For example, the robot should be able to stop following a line when it reaches a wall at
the end of its path.

In principle, we should be able to do this pretty easily, all we need to do is change the “looping
forever” part to “loop while the touch sensor is unpressed.”

Line Tracking Better Lesson

Sensing

Line Tracking • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

1. Save your existing program from the previous lesson under a new name, “LineTrack2”.

3. You will be adding a second sensor for this lesson. Configure a Touch Sensor called
“touchSensor” on S2.

2. Open the Motors and Sensors Setup menu.

2. Open “Motors and Sensors
Setup”
Select Robot > Motors and Sensors
Setup to open the Motors and
Sensors Setup menu.

1a. Save program As...
Select File > Save As... to save your
program under a new name.

1b. Name the program
Give this program the name
“LineTrack2”.

1c. Save the program
Press Save to save the program
with the new name.

3b. Name the sensor
Name the Touch Sensor on
port S2 “touchSensor”.

3c. Set Sensor Type
Identify the Sensor Type as a
“Touch” sensor.

3a. Open A/D Sensors Tab
Click the A/D Sensors tab

In this lesson, you will adapt your line tracking program to stop when a Touch Sensor is
pressed, and then make it more robust by replacing risky nested loops with if-else statements.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

4. On your physical robot, plug the Touch Sensor into Port 2.

5. Press OK on the Motors and Sensors Setup menu.

5. Press OK
Accept the changes to the sensor
setup and close the window.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

7a. Block up the robot
Place an object under the robot
so that its wheels don’t reach
the table. The robot can now
run without moving.

Line Tracking Better (cont.)

6. Replace the “forever” condition 1==1 with the condition “the touch sensor is unpressed”,
the same condition you used to “run until pressed” in the Wall Detection (Touch) lesson.
This condition will be true when the SensorValue of touchSensor is equal to 0.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

6. Modify this code
Change the condition
in parentheses to check
whether the “touch sensor
is unpressed” instead.

The condition will be true
when the touch sensor’s
value is equal to 0.

7. Elevate (“block up”) the robot so that you can test it without its wheels touching the ground.
Note that the light sensor now hangs in the air. Download and run your program.

7b. Download the program
Click Robot > Compile and
Download Program.

7c. Run the program
Click “Start” on the onscreen
Program Debug window, or
use the NXT’s on-brick menus.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

Checkpoint
Check that your Line Tracking behavior is correctly responding to light and dark by placing light-
and dark-colored objects or paper under the light sensor.

Simulated light surface
Place a sheet of white paper under the sensor
to simulate the robot traveling off the line and
onto the light table surface. Watch for the
motors to change behaviors accordingly.

Simulated dark line
Using a dark-colored object (or the naturally low
value of the sensor when held in the air like this),
confirm that the robot exhibits the correct motor
behaviors when the sensor sees “dark”.

We modified the program so that the (condition) of the while() loop would only be true as long as
the Touch Sensor was unpressed. When the sensor is pressed, the loop should end, and move on.

Touch the Sensor
Press in the bumper
on the robot to trigger
the Touch Sensor.

Observe motors
Do the motors stop like
they should at the end
of the program?

Light/Dark again
Release the Touch
sensor, and see if the
robot still responds to
light and dark.

Light/Dark pressed
Hold down the Touch
Sensor bumper, and try
light/dark again. Does
anything happen?

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Line Tracking Better (cont.)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

Code must reach
this point
The Touch Sensor is
only checked when
the program reaches
this line.

The current program contains flawed logic. Until the robot stops seeing dark, there’s no
way for the program to reach the line that checks the touch sensor! This “stuck in the inner loop”
problem will always be a danger any time we place one loop inside another, a structure called a
“nested loop”. We were only able to get the robot to recognize touch by waving the light object in
front of it to force it out of the while(dark) loop, and back around to check the Touch Sensor again.

The robot responds strangely. When you pressed the touch sensor, it didn’t respond. But when you
held the touch sensor and waved the paper underneath it, the robot did stop. The touch sensor
seems to be doing its job of stopping the loop... sometimes? Let’s step through the code.

a. Touch Sensor check
The program checks the
condition only at this
point. It’s true when we
start, so the program
goes “inside” the loop.

b. Inner loop
As long as the robot
continues to see dark,
it enters and remains
in this loop.

What was the program was doing while the robot saw the dark object (or dark space below its
sensor)? The program reached and went inside the while(dark) loop, (b) above, and remained
inside as long as the Light Sensor continued seeing dark. Consider which lines check the Touch
Sensor. While the program was inside the inner while() loop, was it ever able to reach those lines?

Key concept: While() loops do not continually monitor their
(conditions). They only check when the program reaches the
“while” line containing the condition.

Code is stuck here
Until the Light Sensor
stops seeing dark,
the program doesn’t
leave this loop.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

In the same way that the while loop started with the word “while”, the if-else starts with the
word “if”. It, like the while loop, is followed immediately by a condition in parentheses. In fact, it
uses the same condition as the old program to check the light sensor. The difference is that the
if-else statement will only run the commands in the brackets once, regardless of the light or touch
sensor readings.

If the SensorValue of the lightSensor is less than the threshold, then the code directly after will
execute, once. The else, followed by another set of curly braces, represents what the program
should do if the condition is not true.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

7a. Modify this code
Replace while with if.

If the light sensor value is
less than 45, run the code
between the curly braces,
once only, then move on.

The solution requires a little shift in thinking. The program as it is now involves running trough an
“inner” while loop, where it has the potential to get stuck, oblivious to the outside world. We need
to get rid of the nested loop. If, instead, we break down the robot’s actions into a series of tiny,
instantaneous decisions that will always pick the correct direction, we can avoid the need to go
“inside” a loop that might not end in time. Enter the if-else statement.

	 	 if(condition)
	 	 {
	 	 	 true-commands;
	 	 }
	 	 else
	 	 {
	 	 	 false-commands;
	 	 }

General form

Conditional (if-else) loops always follow the pattern shown here.

If the (condition) is true, the true-commands will run.
If the (condition) is false, the false-commands will run instead.

Note, however, that whichever set of commands is chosen, they
are only run once, and not looped!

7b. Modify this code
Replace the while() line with
the keyword else.

If the code in the if statement’s
brackets did not run, the code in
the else statement’s brackets
will instead (once). This should
only happen when the light
sensor is seeing a value >= 45
(i.e .light).

7. Replace the inner while() loops with a simpler, lightweight decision-making structure called
a conditional statement, or if-else statement.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Better (cont.)

End of Section
Save your program, download, and run.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

8. Add this code
Stop both motors. Because these
lines come outside the while()
loop, they will run after the
while() loop has completed.

The robot no longer gets stuck in the “inner” while() loop, and successfully tracks the line until the
touch sensor is triggered.

8. As a final touch, add a Stop motors behavior into the program, right before the final bracket.
This ensures that you’ll see an immediate reaction when the robot gets out of the loop.

Sensing

Line Tracking • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

The behavior we programmed in the previous lesson is great for those situations where you want
the robot to follow a line straight into a wall, and stop. However, let’s see if there are any good
ways to make the robot line track until something else happens.

To make the robot go straight for 3 seconds, we gave it motor commands, followed by a
wait1Msec(time)command. How would this work with line tracking?

Line Tracking Timer Lesson

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 wait1Msec(3000);

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

Location C
How about here like this?

Location D
Or here?

Location B
Here?

Location A
Does the wait1Msec
command go here?

Option E
Both B and D together.

Which one of the above locations is the right place to put the wait1Msec command?

The correct answer is: none. There is no right place to put a wait1Msec command to get the
robot to line track for 3 seconds. Wait1Msec does not mean “continue the last behavior for this
many milliseconds,”it means, “go to sleep for this many milliseconds.”

You’ve really told the robot to put its foot on the gas pedal, and go to sleep. That doesn’t work
when the robot needs to watch the road. Instead, we’ll keep the robot awake and attentive, using
a Timer (rather than just Time) to decide when to stop.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

Your robot is equipped with four Timers, T1 through T4, which you can think of as Time Sensors,
or if you prefer, programmable stopwatches.

Using the Timers is pretty straightforward: you reset a timer with the ClearTimer() command,
and it immediately starts counting time.

Then, when you want to find out how long it’s been since then, you just use time1[TimerName],
and it will give you the value of the timer, in the same way that SensorValue(SensorName)
gives you the value of a sensor.

	 	 ClearTimer(TimerName);

	 	 while(time1[TimerName]	<	5000)	

Timer Tips

Timers should be reset when you are ready to start counting.

time1[TimerName] represents the timer value in milliseconds
since the last reset. It is shown here being used to make a while
loop run until 5 seconds have elapsed.

Sensing

Line Tracking • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

1. Open the Touch Sensor Line Tracking program “LineTrack2”.

2. Save this program under a new name, “LineTrackTimer”. (Note the “r” at the end of “timer”)

2a. Save program As...
Select File > Save As... to save your
program under a new name.

2b. Name the program
Give this program the name
“LineTrackTimer”.

2c. Save the program
Press Save to save the program
with the new name.

1a. Open Program
Select File > Open and Compile to
retrieve your old program.

1b. Select the program
Select “LineTrack2”.

1c. Open the program
Press Open to open the saved
program.

In this lesson you will learn how to use Timers to make a line-tracking behavior run for a set
amount of time.

Sensing

Line Tracking • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

Checkpoint
The program on your screen should again look like the one below.

3. Before a timer can be used, it has to be cleared, otherwise it may have an unwanted
time value still stored in it.

2
3
4
5
6
7
8
9

10

3. Add this code
Reset the Timer T1 to 0 and
start it counting just before
the loop begins.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

task main()
{

 while(SensorValue(touchSensor) == 0)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

task main()
{

 ClearTimer(T1);

 while(SensorValue(touchSensor) == 0)
 {

 if(SensorValue(lightSensor) < 45)

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Timer (cont.)

4. Now, change the while loop’s (condition) to check the timer instead of the touch sensor.
The robot should line track while the timer T1 reads less than 3000 milliseconds.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

End of Section
Download and Run.

task main()
{

 ClearTimer(T1);

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;

4. Modify this line
Base the decision about whether
to continue running, on how
much time has passed since T1’s
last reset.

ROBOTC gives you four different timers to work with: T1, T2, T3, and T4. They can be reset and
run independently, in case you need to time more than one thing. You reset them the same way
– ClearTimer(T2); – and you check them the same way – time1[T2].

Still, there’s the issue of timing itself. Motors, even good ones, aren’t perfectly precise. By
assuming that you’re going a certain speed, and therefore will go a certain distance in a set
amount of time, you are making a pretty bold assumption.

In the next part of this lesson, you’ll find out how to track a line for a certain distance, instead of
tracking for time and hoping that it equates to the correct distance.

Line Tracking for Time(r)
The robot tracks the line for a set
amount of time. But is time really
what you want to measure?

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson we’ll find out how to watch for distance, instead of watching for time and hoping that
the robot moves the correct distance, like in our previous program.

Line Tracking Rotation

A rotation sensor is a patterned disc attached to the inside of the motor. By monitoring the
orientation of the disc as it turns, the sensor can tell you how far the motor has turned, in
degrees. Since the motor turns the axle, and the axle turns the wheel, the rotation sensor can tell
you how much the wheel has turned. Knowing how far the wheel has turned can tell you how far
the robot has traveled. Setting the robot to move until the rotation sensor count reaches a certain
point allows you to accurately program the robot to travel a set distance.

NXT Motors
Rotation sensors are built into
every NXT motor.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

Review
The last program we’re going to visit in the Line Tracking lesson is perhaps the most useful
form, but it’s taken us awhile to get here. Progress in engineering and programming projects is
often made in this “iterative” way, by making small, directed improvements that build upon one
another. Let’s quickly review what we have done in some of the previous lessons.

We started with figuring out that a line tracking behavior consists of bouncing back and forth
between light and dark areas in an effort to follow the edge of a line.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

We then implemented a naive version of the line tracking behavior using while() loops, inside
other while() loops.

But, we found that the program could get stuck inside one of those inner loops, preventing it from
checking the sensor that we wanted to use to stop the tracking.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

task main()
{

 while(1 == 1)
 {

 while(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 while(SensorValue(lightSensor) >= 45)
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

}

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

Then, we upgraded from checking a Touch Sensor, to being able to use an independent timer to
determine how long to run the line tracker.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

task main()
{

 ClearTimer(T1);

 while(time1[T1] < 3000
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;

We then implemented if-else conditional statements, which allow instantaneous sensor checking,
and thus avoid the “nesting” of loops inside other loops, which had caused the program to get stuck.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

1. Start by opening the Line Tracking Timer Program “LineTrackTimer”.

2. Save this program under a new name, “LineTrackRotation”.

2a. Save program As...
Select File > Save As... to save your
program under a new name.

2b. Name the program
Give this program the name
“LineTrackRotation”.

2c. Save the program
Press Save to save the program
with the new name.

1b. Select the program
Select “LineTrackTimer”.

1c. Open the program
Press Open to open the saved
program.

Now, let’s improve upon the Timer-based behavior by using a sensor more fundamentally
connected to the quantity we wish to measure: distance traveled, using the Rotation Sensor.

In this lesson you will learn how to use the Rotation Sensors built into every NXT motor to
make a line tracking behavior run for a set distance.

1a. Open Program
Select File > Open and Compile to
retrieve your old program.

Sensing

Line Tracking • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

Checkpoint
Your starting program for this lesson should look like the one below.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

It’s time to start changing the program to use the Rotation sensors. Rotation sensors have
no guaranteed starting position, so, you must first reset the rotation sensor count. It will take
the place of the equivalent reset code used for the Timer.

In the robotics world, the term “encoder” is often used to refer to any device that measures
rotation of an axle or shaft, such as the one that spins in your motor. Consequently, the ROBOTC
word that is used to access a Rotation Sensor value is nMotorEncoder[MotorName].

Unlike the Timer, which has its own ClearTimer command, the rotation sensor (motor encoder)
value must be manually set back to zero to reset it. The command to do so will look like this:

task main()
{

 ClearTimer(T1);

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

Example:

nMotorEncoder[motorC] = 0;

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

3. Start with the left wheel, attached to Motor C on your robot. Reset the rotation sensor on
that motor to 0.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

task main()
{

 nMotorEncoder[motorC] = 0;

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

3. Modify this code
Instead of resetting a Timer,
reset the rotation sensor in
MotorC to a value of 0. Replace
ClearTimer(T1); with
nMotorEncoder[motorC]=0;

Sensing

Line Tracking • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

4. Reset the other motor’s rotation sensor, nMotorEncoder[motorB] = 0;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

task main()
{

 nMotorEncoder[motorC] = 0;
 nMotorEncoder[motorB] = 0;

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

 motor[motorC] = 0;
 motor[motorB] = 0;

}

4. Add this code
Reset the rotation sensor in
MotorB to 0 as well.

Sensing

Line Tracking • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

5. The NXT motor encoder measures in degrees, so it will count 360 for every full rotation
the motor makes. Change the while() loop’s condition to make this loop run while the
nMotorEncoder value of motorC is less than 1800 degrees, five full rotations.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

task main()
{

 nMotorEncoder[motorC] = 0;
 nMotorEncoder[motorB] = 0;

 while(nMotorEncoder[motorC] < 1800)
 {

 if(SensorValue(lightSensor) < 45)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;

5. Modify this code
Set MotorC to run for five full
rotations or 1800 degrees.

Checkpoint
Save, download and run your program. You may want to mark one of the wheels
with a piece of tape so that you can count the rotations.

Sensing

Line Tracking • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Tracking Rotation (cont.)

6. We only checked one wheel and not the other. Add a check for the other motor’s encoder
value to the condition. The {condition} will now be satisfied and loop as long as BOTH motors
remain below the distance threshold of 1800 degrees.

2

3

4

5

6

7

8

9

10

task main()
{

 nMotorEncoder[motorC] = 0;
 nMotorEncoder[motorB] = 0;

 while(nMotorEncoder[motorC] < 1800 && nMotorEncoder[motorB] < 1800)
 {

End of Section
Download and run this program, and you will see that on curves going to the left, where the right
motor caps out at 1800 first, this program will stop sooner than the one that just waited for the
left motor (remember, the left motor is traveling less when making a left turn).

Take a step back, and look at what you have. Your robot is now able to perform a behavior
using one sensor, while watching another sensor to know when to stop. Using the rotation sensor
means that your robot can now travel for a set distance along the line, and be pretty sure of how
far it’s gone. These capabilities can be applied to more than just line tracking, however. You can
now build any number of environmentally-aware decision-making behaviors, and run them until
you have a good reason to stop. This pattern of while and conditional loops is one of the most
frequently used setups in robot programming. Learn it well, and you will be well prepared for
many roads ahead.

6. Add this code
This change sets the condition
to run while “the motor encoder
on motorC reads less than 1800
degrees, AND the motor encoder
for motorB also reads less than
1800 degrees.

