
ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson, you will learn the basic rules for writing ROBOTC programs.

ROBOTC is a text-based programming language based on
the standard C programming language.

Programming in ROBOTC ROBOTC Rules

Commands to the robot are written as text on the screen, processed by the ROBOTC compiler into
a machine language file, and then loaded onto the robot, where they can be run. Text written as
part of a program is called “code”.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

Program Code
Text written as part of a
program is called “code”.

1
2
3
4
5
6
7

You type code just like normal text, but you must keep in mind that capitalization is important to
the computer. Replacing a lowercase letter with a capital letter or a capital letter with lowercase,
will cause the robot to become confused.

Task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

Capitalization
Capitalization (paying attention to UPPERCASE
vs. lowercase) is important in ROBOTC.

Capitalizing the ‘T’ in task causes ROBOTC
to no longer recognize this command.

1
2
3
4
5
6
7

As you type, ROBOTC will try to help you out by coloring the words it recognizes. If a word appears
in a different color, it means ROBOTC knows it as an important word in the programming language.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

Code coloring
ROBOTC automatically colors key words
that it recognizes.

Compare this correctly-capitalized “task”
command with the incorrectly-capitalized
version in the previous example. The correct one
is recognized as a command and turns blue.

1
2
3
4
5
6
7

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

And now, we will look at some of the important parts of the program code itself.

The most basic kind of statement in ROBOTC simply gives a command to the robot.
The motor[motorC]; statement in the sample program you downloaded is a simple
command. It instructs the motor plugged into the Motor C port to turn on at 100% power.

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

Simple statement
A straightforward command to the robot.

This statement tells the robot to turn on
the motor attached to motor port C at
100% power.

1
2
3
4
5
6
7

Statements are run in order, as quickly as the robot is able to reach them. Running this program
on the robot turns the motor on, then waits for 3000 milliseconds (3 seconds) with the motor still
running, and then ends.

Sequence
Statements run in English reading order
(left-to-right, top-to-bottom). As soon as
one command is complete, the next runs.

These two statements cause the motors to
turn on (1st command), and then the robot
immediately begins a three second wait
(2nd command) while the motors remain on.

Programming in ROBOTC ROBOTC Rules (cont.)

Simple statement (2)
This is also a simple statement. It tells
the robot to wait for 3000 milliseconds
(3 seconds).

1st

2nd

End
When the program runs out of statements
and reaches the } symbol in task main, all
motors stop, and the program ends.

End

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

How did ROBOTC know that these were two separate commands?
Was it because they appeared on two different lines?

No. Spaces and line breaks in ROBOTC are only used to separate words from each other in
multi-word commands. Spaces, tabs, and lines don’t affect the way a program is interpreted
by the machine.

task main()
{

 motor[motorC] = 0;
 wait1Msec(3000);

}

Whitespace
Spaces, tabs, and line breaks are generally
unimportant to ROBOTC and the robot.

They are sometimes needed to separate
words in multi-word commands, but are
otherwise ignored by the machine.

1
2
3
4
5
6
7

But what about ROBOTC? How DID it know where one statement ended and the other began?
It knew because of the semicolon at the end of each line. Every statement ends with a
semicolon. It’s like the period at the end of a sentence.

Semicolons
Like periods in an English sentence,
semicolons mark the end of every
ROBOTC statement.

task main(){motor[motorC
]=0;wait1Msec(3000);}

No Whitespace
To ROBOTC, this program is the same as
the last one. To the human programmer,
however, this is close to gibberish.

Whitespace is used to help programs be
readable to humans.

1
2

So why ARE they on separate lines? For the programmer. Programming languages are
designed for humans and machines to communicate. Using spaces, tabs, and lines helps
the human programmer to read the code more easily. Making good use of spacing in your
program is a very good habit for your own sake.

Checkpoint
Statements are commands to the robot. Each statement ends in a semicolon so that ROBOTC
can identify it, but each is also usually written on its own line to make it easier for humans to
read. Statements are run in “reading” order, left to right, top to bottom, and each statement is
run as soon as the previous one is complete. When there are no more statements, the program
will end.

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC uses far more punctuation than English. Punctuation in programming
languages is usually used to separate important areas of code from each other. Most
ROBOTC punctuation comes in pairs.

Punctuation pairs, like the parentheses and square brackets in these two statements, are
used to mark off special areas of code. Every punctuation pair consists of an “opening”
punctuation mark and a “closing” punctuation mark. The punctuation pair designates the
area between them as having special meaning to the command that they are part of.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Checkpoint
Paired punctuation marks are always used together, and surround specific important parts of a
statement to set them apart.

Different commands make use of different punctuation. The motor command uses square
brackets and the wait1Msec command uses parentheses. This is just the way the commands are
set up, and you will have to remember to use the right punctuation with the right commands.

Punctuation pair: Square brackets []
The code written between the square
brackets of the motor command indicate
what motor the command should use.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Punctuation pair: Parentheses ()
The code written between the parentheses
of the wait1Msec command tell it how
many milliseconds to wait.

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Simple statements do the work in ROBOTC, but Control Structures do the thinking.
These are pieces of code that control the flow of the program’s commands, rather than issue
direct orders to the robot.

Simple statements can only run one after another in order, but control statements allow the
program to choose the order that statements are run. For instance, they may choose
between two different groups of statements and only run one of them, or sometimes they
might repeat a group of statements over and over.

One important structure is the task main. Every ROBOTC program includes a special section
called task main. This control structure determines what code the robot will run as part of the
main program.

task main()
{

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Checkpoint
Control structures like task main decide which lines of code are run, and when. They control
the “flow” of your program, and are vital to your robot’s ability to make decisions and respond
intelligently to its environment.

Control structure: task main
The control structure “task main” directs the
program to the main body of the code. When you
press “Start” or “Run” on the robot, the program
immediately goes to task main and runs its code.

The left and right curly braces { } belong to the
task main structure. They surround the commands
which will be run in the program.

while(SensorValue(touchSensor) == 0)
{
 motor[motorC] = 100;
 motor[motorB] = 100;
}

Control structure preview
Another control structure, the while
loop, repeats the code between its
curly braces { } as long as certain
conditions are met.

Normally, statements run only
once, but with a while loop, they
can be told to repeat over and
over for as long as you want!

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Programming languages are meant to be readable by both humans and machines.
Sometimes, the programmer needs to leave a note for human readers to help understand what
the code is doing. For this, ROBOTC allows “comments” to be made.

Comments are text that the computer will ignore. A comment can therefore contain notes,
messages, and symbols that may help a human, but would be meaningless to the computer.
ROBOTC will simply skip over them. Comments appear in green in ROBOTC.

End of Section
What you have just seen are some of the primary features of the ROBOTC language. Code is
entered as text, which builds statements. Statements are used to issue commands to the robots.
Control structures decide which statements to run at what times. Punctuation, both single like
semicolons and paired like parentheses, are used to set apart important parts of commands.

A number of features in ROBOTC code are designed to help the human, rather than the
computer. Comments let programmers leave notes for themselves and others, and whitespace
like tabs and spaces helps to keep your code organized and readable.

// Move motor C forward with 100% power

task main()
{

 /*
 Motor C forward with 100% power
 Do this for 3 seconds
 */

 motor[motorC] = 100;
 wait1Msec(3000);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Comments: // Single line
Any section of text that follows
a //double slash on a line,
is considered a comment,
although code to the left of the
// is still considered normal.

Comments: /* Any length */
A comment can be created in ROBOTC
using another type of paired punctuation,
which starts with /* and ends with */

This type of comment can span multiple
lines, so be sure to include both the
opening and closing marks!

Programming in ROBOTC ROBOTC Rules (cont.)

