
ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Values and Variables

In the previous lesson, “Speed Based on Volume”, the robot set its motor power levels based on
sound sensor readings. To the robot, this was no different than setting the power level to 25, 50,
or 100. These numbers – 25, 50, 100, Sound Sensor readings – are all interchangeable values
that could be used to set the motor power levels.

There are some situations where values need to be stored for later use. For example, a robot sent
into a cave to gather Light Sensor values needs to both record those values inside the cave and
be able to recall them afterwards.

Without some way to store these values, they will be lost by the time the robot leaves the cave.
Variables are the robot’s way of storing values for later use. They function as containers or
storage for values. Values such as the cave robot’s sensor reading can be placed in a variable
when calculated (inside the cave), and retrieved at a later time (outside the cave) for convenient
use. A variable is simply a place to store a value.

There are, however, different types of values. For instance, there are different types of numbers
(integers versus decimals, to name just two), and there are values that aren’t even numbers, like
words. Since there are different types of values, there are different types of variables to hold
them. In order to create (or “declare”) a variable, the programmer must identify two key pieces of
information: the type of value it will hold, and a name for the variable.

In this lesson, we’re going to look a little deeper into the world of “values,” and pay special
attention to the programming structures that are used to represent and store values, which
are called “variables.”

Robot enters the cave
The robot enters the cave (dark area
on the right) to gather data.

Robot takes sensor readings
The robot must take and store
sensor readings inside.

Robot returns
The robot backs out of the cave and
displays the values from inside.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Values and Variables (cont.)

Other kinds of values also exist, including text like “Hello”, and logical values like True.

Floating point (“float”) numbers are so called because the decimal point “floats” around
in the value, allowing decimal places to be used. Floating point numbers can be positive,
negative, or zero, but they may also represent decimals. Floating point numbers take
up more memory on the robot, and are slower to calculate with, so integer values are
preferred when decimals aren’t necessary.

Integers Non-Integers

3.1456, 31.456, 0.0, -314.56
Floating Point Numbers

10, 0, -10 10.5 10.0

Number values in ROBOTC are broken down into two different kinds of numbers:

Integer, or “int” values are numbers with no fractional or decimal component.

Strings (“string”): Text in ROBOTC is always a “string”. In ROBOTC, the word “Hello” is
really a collection of letters – ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ – “strung” together to form a single value.
In fact, while all words are strings in ROBOTC, all strings are not words, and do not even
have to be collections of letters. A string may be a series of numbers, or a series of mixed
numbers and letters.

“Hello”, “my name is”, “a16Z”
Strings

true, false
Boolean Values

Boolean (“bool”) values represent “truth” or “logic” values, in the form of “true” or “false”.

The names of variables can include anything that follows the general ROBOTC naming rules
(see the “Wall Detection (Touch)” lesson for a list of rules). For types, ROBOTC breaks values
down into a few simple categories.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Values and Variables (cont.)

End of Section
Things like motor powers and sensor readings are values. Values can be of different types, like
integers or strings. When you need to store them, you can use a variable of the appropriate type
to hold the value for later use. Variables must be declared by assigning them a suitable type
and a name. Names must follow the usual ROBOTC naming rules, and should be chosen so
that you will be able to remember what each variable is supposed to be doing when you read or
troubleshoot your code later.

To declare a variable, simply call out its type, then its name, then end with a semicolon.

int lightValue; will create a new integer-type variable named lightValue.

bool isAwake; will create a new true-or-false (Boolean) variable named isAwake.

Data Type Description Example Code

Integer
Positive and negative whole
numbers, as well as zero.

-35, -1, 0,
33, 100, 345

int

Floating Point
Decimal

Numeric values with decimal
points.

-.123, 0.56,
3.0, 1000.07

float

String
A string of characters that can
include numbers, letters, or typed
symbols.

“Counter
reached 4”,

“STOP”,
“time to eat!”

string

Boolean
True or False. Useful for express-
ing the outcomes of comparisons.

true, false bool

Optionally, you can also assign a value to the variable at this point, but it is not necessary.

int lightValue = 0; will create a new integer-type variable named lightValue,
with a starting value of 0.

bool isAwake = true; will create a new true-or-false (Boolean) variable named
isAwake, with a starting value of true.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and Threshold

When the program begins, the user will be prompted to “scan” a light surface with the Light
Sensor, and then “scan” a dark surface. The robot will then calculate its own Light Sensor
threshold, wait a few seconds, and proceed as normal.

We’ll begin by going through the threshold calculation process manually, and taking note of the
important values that the robot will have to keep track of. Every time a number or value has to be
remembered, make a note.

In this lesson, we will give the robot the ability to configure itself at the beginning of
every run, with only a little human assistance.

Having to reprogram the robot every time the lighting conditions change is not efficient.

Scanning light
The robot’s light sensor is first positioned over a
light surface and told to read and store its value

Scanning dark
Then, the robot’s light sensor is positioned over a
dark surface and told to read and store its value

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and Threshold (cont.)

1. Turn on your NXT and navigate to the “View” mode using the gray arrows.

1a. Push the orange button
Turn on the robot by pushing
the orange button. The screen
should display “My Files” when
it is on.

2. Record your Light and Dark readings. Record these values.

1b. Go to the “View” menu
Navigate to the “View” menu
using the arrow buttons. Press
the orange button to go into it.

1c. Select “Reflected Light”
Select “Reflected Light”, not
“Ambient Light”. You will get
different values otherwise.

1d. Select your port number
Select the port number that your
Light sensor is plugged into.

2a. Record the light value
Place the robot on the light
surface, and record the value
that the Light sensor is reading.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

5. Find the average of the light and dark readings by adding them together and dividing by two.
This thresholdValue will be used for future comparison.

light value + dark value = sum

66 + 33 = 995a.

5b. 99 / 2 = 49.5

sum / 2 = average

5c.
Note: Get rid of the decimal number

 49.5 = 49

Automatic Threshold Variables and Threshold (cont.)

2b. Record the dark value
Place the robot on the dark
surface, and record the value
that the Light sensor is reading.

Get rid of the decimal
ROBOTC will get
rid of the decimal
automatically when
using integers.

5d.
average = threshold

49 = thresholdValue

ROBOTC

Automatic Threshold • 7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

In order to write a program that will auto-calculate the value of threshold, we will need to create
four variables to store the four values that the calculation needs. To declare each variable, a
name and type must be specified. The name should help you to remember what the variable
does. For this lesson these values will be named:

• lightValue
• darkValue
• sumValue
• thresholdValue

Automatic Threshold Variables and Threshold (cont.)

Checkpoint
Four values were either recorded or calculated: light value, dark value, sum, and threshold.

light value + dark value = sum

 66 + 33 = 99
Calculate “sum” value
The sum value is found by adding the
light value and dark value.

99 / 2 ≈ 49

sum / 2 = threshold
Calculate average/”threshold” value
The average is found by dividing the sum
value by 2. The resulting average is the
threshold value.

In addition to a name, the type of value (integer, floating point decimal, string, boolean value)
that each variable will hold needs to be determined.

Light Sensors yield values that are whole numbers. So lightValue and darkValue will be “declared”
as integers. Since the sum of two integers is also an integer, sumValue will be declared as an
integer as well. Dividing by two might result in a decimal, but since the threshold is an estimate to
begin with, rounding won’t hurt it, and so thresholdValue will also be declared as an integer.

Declaring Variables

To create a variable, you must “declare” it with two pieces of information:

datatype then name;

Example:
int lightValue; will create a new integer-type variable named lightValue.

ROBOTC

Automatic Threshold • �© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

7. Place the four variables declared as integers in a new program.

Automatic Threshold Variables and Threshold (cont.)

7a. Create new program
Select File > New to create a
blank new program.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

}

2
3
4
5
6
7
8
9
10

7c. Add these lines
Declare the four variables,
lightValue, darkValue, sumValue
and thresholdValue as integers.
Remember that typographic
errors can keep the program
from functioning!

End of Section
Four variables have been created to store the four values needed to calculate a Light Sensor
threshold. In the next lesson we will write the remainder of the program.

task main()
{

}

2
3
4
5
6
7
8
9

10

7b. Add this code
These lines form the main body
of the program, as they do in
every ROBOTC program. Leave
four lines between curly brackets
for the variables.

ROBOTC

Automatic Threshold • 9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables

The robot will take the first Light Sensor reading over a light surface when the Touch Sensor is
pressed, then take a second reading over a dark surface when the Touch Sensor is pressed a
second time.

In this lesson, you will learn how to store Light Sensor values in the variables you created, and
how to use a Touch Sensor as a user interface button.

1. Open “Motors and Sensors Setup”
Select Robot > Motors and Sensors Setup to
open the Motors and Sensors Setup menu and
configure the sensors.

1. Open the Motors and Sensors Setup menu.

First, we’ll configure the Light and Touch Sensors.

Light Sensor

Touch Sensor

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

}

2
3
4
5
6
7
8
9
10

Existing program
Your program should
currently look like this.

ROBOTC

Automatic Threshold • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

3. Select the A/D Sensors tab, and make Port 1 the Touch Sensor, named touchSensor,
and Port 2 the Light Sensor, named lightSensor.

3a. Select “A/D Sensors” tab
Selecting this tab allows you view your
sensors set up menu.

3c. Name the sensor
Name the Touch Sensor on
port S1 “touchSensor”.

3b. Set sensor type
Identify the Sensor Type as a
“Touch” sensor.

2. ROBOTC will ask if you want to save your program. Click Yes, then save the program
as “Autothreshold”.

2a. Select “Yes”
Save your program
when prompted.

2b. Name the program
Name the program
“Autothreshold”.

2c. Save the program
Press Save to save the
program with the new
name.

3e. Name the sensor
Name the Light Sensor on port
S2 “lightSensor”.

3d. Set sensor type
Identify the Sensor Type as a
“Light Active” sensor.

3f. Click OK

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

The next step is for the robot to take the first Light Sensor reading over a “light” surface when the
Touch Sensor is pressed. Then, take the dark reading on the next Touch Sensor press.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

4. The robot should wait for the Touch Sensor to be pressed. A while() loop is used to check the
touchSensor value to watch for a press. As long as the Touch Sensor isn’t pressed,

 (SensorValue(touchSensor)==0) remains true, and the robot does nothing.

5. After the Touch Sensor is pressed, record the Light Sensor’s value to the variable
lightValue. Assign the value of the sensor to the variable. LightSensor =
SensorValue(lightSensor) Note: A single equals sign means, “set to the value of”.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

}

2
3
4
5
6
7
8
9

10
11
12
13
14

4. Add this code
This while() loop idles
(i.e. runs an empty {} code
block) while the Touch
Sensor is not pressed.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

5. Add this code
This line puts the Light Sensor’s value
into the variable lightValue.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

6. Next, the robot records the dark value. Either retype the wait-for-press loop, and the storing
of the value manually, or just highlight and copy the code you just wrote, (starting with “while”
and ending with the semicolon) and paste another copy of it below. In this second recording,
of course, you want to record the value to the dark Value.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

6b. Add this code
This line puts the Light Sensor’s value
into the variable “darkValue”.

Checkpoint
Check to see if the program is working. It is almost always better to write code in small bits
and test often, rather than waiting to test a long section of code in which many mistakes could
be hiding.

7. Compile, Download and run your program.

7. Compile and Download
Robot > Compile and
Download Program

6a. Add this code
This while() loop idles while the
Touch Sensor is not pressed, just
like the previous one.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Programming with Variables (cont.)

8. Run the program. Put the Light Sensor over a light surface. Press the Touch Sensor.
Keep an eye the robot... it may not do what you expect!

End of Section
Something is wrong with the program. In the next lesson, the debugger will be used
to fix the problem.

9. The program seems to end immediately when the Touch Sensor is pressed.
That’s not what we wanted!

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger

In this lesson, the Debugger windows will be used to determine why the program is not
running properly. The debugger can be used to “freeze time” for the robot and allows you to
step through the program at whatever speed you want.

1. Something is obviously wrong with the program. Download the program again, but this time,
make sure the robot stays plugged into the computer, and watch the code window.

1a. Plug the robot back in
Robot has to be plugged into the
computer, via USB, to be able to
view the code window.

1b. Compile and download
Select Robot > Compile and
Download Program. The option
may just read “Download
Program”, which is fine also.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

2. After you have downloaded the program to your robot, fix the problem by open up the
Debugger, then select both the Global Variables and the NXT Devices options so both these
windows are visible.

2a. View Debugger
Select Robot > Debugger to open
up the Program Debug window.

2b. View Debugger Windows
Select Robot > Debug Windows
and select both Global Variables
and NXT devices if they are not
already checked.

Checkpoint
The screen should look like the sample below with three windows visible: Program Debug,
Global Variable and NXT Device Control Display.

ROBOTC

Automatic Threshold • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

3. Run the program. Observe what happens when you push the Touch Sensor.

3. Push Touch Sensor
Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Checkpoint
The button was pressed once, and the program shot straight to the end. You can tell the program
is finished because the Start button on the Program Debug window is highlighted. (If the program
was still running, the Suspend button would be highlighted.)

4. Run the program again, but this time use the Program Debug window to “freeze” time and
step through the program while suspended. To do so, press the Suspend button, then the
Step button.

4b. Press Suspend button
Press the Suspend button on the
Program Debug window to “stop” time
and leave the program right where it is.

4c. Press Step button
Press the Step button to go to the
next line of code.

4a. Press Start button
Press the Start button to get the
program started.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

5. Press the Touch Sensor and observe in the NXT Device Control Display that it is pushed and
working properly.

5b. Observe the Touch Sensor
The value of the Touch Sensor, 1,
means that it is pressed.

5a. Push Touch Sensor
Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Since you have suspended the program, the robot’s program remains “frozen” at the first while()
loop (where the yellow line appears in the code). The NXT Device Control window on your PC
screen, however, remains operational, and will cantinue to report the value of the sensors.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Line about to run
The program will run this
step when the Step button is
pressed again.

Because the line is a while
loop, it will evaluate the
(condition) and decide
whether to loop, or move on.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

6. While continuing to hold the Touch Sensor in the pushed position, click the Step button on the
Program Debug control panel to allow the program to move past the while() loop.

6a. Push the Touch Sensor
Hold the Touch Sensor in the
pushed position while pressing the
Step button.

6b. Press Step button
Press the Step button while pushing
the Touch Sensor to allow you to go
to the next step of the code.

Since the Touch Sensor value is not 0 at the time the while loop checks, the program moves
past the loop to the next step. The next line turns yellow now to indicate that this command is
about to be executed.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Line about to run
The program will run this
line when the Step button is
pressed again.

Line that was run
When you pressed Step, this line
was run. The (condition) was
False because the touchSensor
value was 1 (and not 0), so the
program exited the loop and
moved on.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

7. Find the variable lightValue in the Global Variables window. Push the Touch Sensor. Keep it
pushed in while pressing the Step button. The Light Sensor’s value when the Step button was
first pressed is now stored in the variable lightValue.

7b. Press Step button
Press the Step button while pushing
the Touch Sensor to enable the
program to move to the next line
of code.

7c. Stored Variable
The lightValue variable now
equals the value of the Light
Sensor when the Touch Sensor
was first pushed, as shown in the
Global Variables window.

7a. Push the Touch Sensor
Hold the Touch Sensor in the pushed
position while pressing the
Step button.

13
14
15
16
17
18
19
20
21
22

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

Line about to run
The program is now ready to
run this next step when Step is
pressed again.

Because the line is a while loop,
it will evaluate the (condition)
and decide whether to loop, or
move on.

Line that was run
When you pressed Step, this line
was run, and stored the value of
the Light Sensor in the variable.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

8. While continuing to hold the Touch Sensor in, press the Step button several times to step
through the rest of the program.

8b. Press Step button
Press the Step button several times
while pushing the Touch Sensor
to step through to the end of the
program.

8a. Keep the Touch Sensor pressed
Hold the Touch Sensor in the pushed
position while pressing the Step button.

13
14
15
16
17
18
19
20
21
22

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

} 8d. Press Step button again
The program moves to the next
line of code, the last curly bracket,
and the program ends.

13
14
15
16
17
18
19
20
21
22

8c. Press Step button again
The program moves to the next
line of code, making the variable
darkValue equal to the Light
Sensor value the moment the
Touch sensor was pressed.

Line that was run
When you pressed Step, this line
was run. The (condition) was
False because the touchSensor
value was 1 (and not 0), so the
program exited the loop and
moved on.

 lightValue=SensorValue(lightSensor);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Variables and the Debugger (cont.)

9. Place a command between the while() loops telling the robot to wait for 1 second before
looking for the Touch Sensor value again. This allows the human operator enough time to
push, and release, the Touch Sensor.

Checkpoint
Do you see what the problem is? When the Touch Sensor is held down, the program shoots
straight through to the end of the program without stopping.

Why does it do this? Because we told it to. When the Touch Sensor was pressed, it took the
program out of the first while loop. This was what we intended. But then, it quickly set the
lightSensor variable, and then waited for the button to be pressed... which it still was, from the
first press! The program immediately jumped past the second while loop. This is what we said,
though certainly not what we wanted!

With the Step function, you could see this happening one step at a time. At normal speed, all this
happens before you can take your finger off the button from the first press!

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

End of Section
In this lesson, the debugger was used as a tool to diagnose why a program was not working
properly. Stepping through the commands in a program one at a time allows you to slow down
the program so the problem can be found.

9. Add this code
Tells the robot to wait for 1
second before it starts looking
for the Touch Sensor again.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Threshold Calculations

Checkpoint
This is what the current program should look like.

About half of the autothreshold calculator program is complete. In the previous lessons the
Light and Dark values were recorded and stored in variables. In this lesson, you will use them
to calculate the threshold value for the robot’s environment.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Threshold Calculations (cont.)

1. Starting at the end of the program, just before the closing brace of the task main pair, set the
sumValue equal to the sum of lightValue and darkValue. The variable sumValue is now being
used to store the result of lightValue plus darkValue.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;

}

1. Add this code
Add lightValue and darkValue
together, and store the result in
the variable sumValue.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

2. Set thresholdValue equal to sumValue divided by two. The variable thresholdValue now stores
the threshold value calculated from the readings of light and dark surfaces.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

2. Add this line of code
Divide sumValue by 2, and
store the result in the variable
thresholdValue.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

}

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

4. Compile and download your program.

5. Step through the program using the debugger, pushing the Touch Sensor at the appropriate
times. Observe the variables window as sumValue stores the sum of lightValue and darkValue;
and thresholdValue stores sumValue divided by two.

4. Compile and download
Robot > Compile and
Download Program

5a. Press Step button
Press the Step button in the
Program Debug window to step
through the program.

Checkpoint
The threshold is now being calculated as the average of the other two values. The debugger
window shows the values of all the variables as they are collected and/or calculated.

5b. Push the Touch Sensor
Push the Touch Sensor over light
and dark surfaces at the appropriate
times when you step through
the program.

5c. Observe variables
Observe the variables window as
lightValue, darkValue, sumValue and
thresholdValue are calculated.

3. Save the Autothreshold program.

5. Save program
File > Save, to save your current
autothreshold program.

ROBOTC

Automatic Threshold • �7© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

6. Open your LineTrackTimer program.

6a. Open and Compile
Select File > Open and Compile
to be prompted to open a file.

6b. Select the program
Select LineTrackTimer from your
previously saved programs, then
double click to open it.

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

7a. Highlight code
Highlight exactly this
section of code in
the LineTrackTimer
program.

7b. Select Copy
Select Edit > Copy
to copy the
highlighted code.

7. Copy the code highlighted below, from lines 5 to 29 of the LineTrackTimer program. Be
careful to copy exactly this portion of the program.

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < 43)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

8. Reopen the autothreshold program.

8a. Open and compile
Select File > Open and Compile
to open a file.

8b. Select the program
Select the authothreshold
program from the previous
saved programs.

9. Paste the code you copied between “sumValue/2;” and the concluding curly brace.

9. Paste the copied code
Place the cursor right before the
last curly brace and select Edit >
Paste to paste the code.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

|
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ROBOTC

Automatic Threshold • �9© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

10. Modify code
Replace the
condition, which had
contained a number,
with the variable
“thresholdValue”, that
holds the calculated
threshold value.

 ClearTimer(T1);

 while(time1[T1] < 3000)
 {

 if(SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC] = 0;
 motor[motorB] = 80;

 }

 else
 {

 motor[motorC] = 80;
 motor[motorB] = 0;

 }

 }

10. Change the condition of the “borrowed” if-else statement so that instead of comparing the
light sensor value to a set number, it checks it against the “thresholdValue” variable calculated
in the Autothreshold program.

ROBOTC

Automatic Threshold • �0© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

Checkpoint
Your final program should look like the one below, and on the following page.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

Automatic Threshold Threshold Calculations (cont.)

 while (time1[T1] < 3000)
 {

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Checkpoint
Your final program should look like the one below. (continued)

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

11. Compile and Download to your robot.

11. Compile and download
Select Robot > Compile and
Download Program to run your
robot.

Checkpoint
Test your program. Find a line you can track in a place where you can turn the lights on and
off. Run your program and press the Touch Sensor once with the Light Sensor over light, to read
the value of the light surface. Move the robot so that it is in line tracking position, with the Light
Sensor over the line.

Pressing the Touch Sensor for the second time should not only read the dark value and calculate
the threshold, but should also make the robot track the line for three seconds. Now turn the lights
off, and run the program again. The robot should still be able to track the line!

Test program with lights off
Change the light in the room and test the
program again. The robot should again be
able to track the line, demonstrating its ability to
calculate a threshold in different conditions.

Test program with lights on
Show the robot what the light surface looks
like, then the dark one, and it should track the
line for three seconds.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

12. While the robot is waiting for the Touch Sensor to be pushed, program the robot to display
a message telling a user to press the button over a light surface. This command makes the
NXT display, on its screen, the words “Read Light Now” at position 0, 31 (that’s the left edge,
about halfway down). Place a similar line in the second while() loop that does the same
thing, but says “Read Dark Now”.

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

12b. Add this code
Tells the NXT to display, on its
screen, the words “Read Dark
Now” after the Touch Sensor has
been pushed and released once.

12a. Add this code
Tells the NXT to display, on its
screen, the words “Read Light
Now” at the beginning of the
program.

The program works, but does need to be made more user-friendly. Right now, the robot will not
tell you what to do, or when. Place simple instructions in the code to solve this problem.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

13. Compile and Download your program to the robot.

13. Compile and Download
Select Robot > Compile and
Download Program.

14. Test the program. After the program starts, the message, “Read Light Now” should appear
on the NXT screen. After the Touch Sensor is pushed and released, the NXT screen should
display the message, “Read Dark Now.” As you did previously, place the robot so that its
Light Sensor is directly over the line, and its chassis roughly parallel with the line so that it is
in good position to track it. When you press the button, the threshold should be calculated,
and the robot should track the line for three seconds.

14a. Read light
When the NXT displays “Read Light
Now”, record the light surface value.

14b. Read dark
When the NXT displays “Read Dark
Now”, place the robot in position
to track a line.

14c. Autothreshold line track
The robot should track a line
for three seconds and end the
program.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and FunctionsVariables and Functions

Automatic Threshold Threshold Calculations (cont.)

task main()
{

 int lightValue;
 int darkValue;
 int sumValue;
 int thresholdValue;

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Light Now”);
 }

 lightValue=SensorValue(lightSensor);

 wait1Msec(1000);

 while (SensorValue(touchSensor)==0)
 {
 nxtDisplayStringAt(0, 31, “Read Dark Now”);
 }

 darkValue=SensorValue(lightSensor);

 sumValue = lightValue + darkValue;
 thresholdValue = sumValue/2;

 ClearTimer(T1);

 while (time1[T1] < 3000)
 {

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

End of Section
This is the complete code for the Automatic Threshold program.

ROBOTC

Automatic Threshold • ��© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Variables and Functions

The robot now tracks a line with its own calculated threshold, and can advise users what to do,
and when.

 if (SensorValue(lightSensor) < thresholdValue)
 {

 motor[motorC]=0;
 motor[motorB]=80;

 }

 else
 {

 motor[motorC]=80;
 motor[motorB]=0;

 }

 }

 motor[motorC]=0;
 motor[motorB]=0;

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Automatic Threshold Threshold Calculations (cont.)

