Variables and Functions

N

Avutomatic Threshold values and variables

In this lesson, we’re going to look a little deeper into the world of “values,” and pay special
attention to the programming structures that are used to represent and store values, which
are called “variables.”

In the previous lesson, “Speed Based on Volume”, the robot set its motor power levels based on
sound sensor readings. To the robot, this was no different than setting the power level to 25, 50,
or 100. These numbers — 25, 50, 100, Sound Sensor readings — are all interchangeable values
that could be used to set the motor power levels.

There are some situations where values need to be stored for later use. For example, a robot sent
into a cave to gather Light Sensor values needs to both record those values inside the cave and
be able to recall them aofterwards.

Robot enters the cave Robot takes sensor readings Robot returns
The robot enters the cave (dark area The robot must take and store The robot backs out of the cave and
on the right) to gather data. sensor readings inside. displays the values from inside.

Without some way to store these values, they will be lost by the time the robot leaves the cave.
Variables are the robot’s way of storing values for later use. They function as containers or
storage for values. Values such as the cave robot’s sensor reading can be placed in a variable
when calculated (inside the cave), and retrieved at a later time (outside the cave) for convenient
use. A variable is simply a place to store a value.

There are, however, different types of values. For instance, there are different types of numbers
(integers versus decimals, to name just two), and there are values that aren’t even numbers, like
words. Since there are different types of values, there are different types of variables to hold
them. In order to create (or “declare”) a variable, the programmer must identify two key pieces of
information: the type of value it will hold, and a name for the variable.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold © 1

ROBOT

N
\C

Automatic Threshold values and variables (cont.)

The names of variables can include anything that follows the general ROBOTC naming rules

(see the “Wall Detection (Touch)” lesson for a list of rules). For types, ROBOTC breaks values
down into a few simple categories.

Number values in ROBOTC are broken down into two different kinds of numbers:

Integer, or “int” values are numbers with no fractional or decimal component.

Integers Non-Integers

0,010 (3

Floating point (“float”) numbers are so called because the decimal point “floats” around
in the value, allowing decimal places to be used. Floating point numbers can be positive,
negative, or zero, but they may also represent decimals. Floating point numbers take

up more memory on the robot, and are slower to calculate with, so integer values are
preferred when decimals aren’t necessary.

Floating Point Numbers

3.1456, 31.456, 0.0, -314.56

Other kinds of values also exist, including text like “Hello”, and logical values like True.
Strings (“string”): Text in ROBOTC is always a “string”. In ROBOTC, the word “Hello” is
really a collection of letters — ‘H’, ‘e’, ‘l’, /I, ‘o’ — “strung” together to form a single value.

In fact, while all words are strings in ROBOTC, all strings are not words, and do not even

have to be collections of letters. A string may be a series of numbers, or a series of mixed
numbers and letters.

Strings
“Hello’}] “my name is’] “a16Z"

Boolean (“bool”) values represent “truth” or “logic” values, in the form of “true” or “false”.

Boolean Values

true, false

. /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 2

ROBOTC

\
/

N

N

int lightValue; will create a new integer-type variable named lightValue.

bool isAwake; will create a new true-or-false (Boolean) variable named isAwake.

int lightValue = 0; will create a new integer-type variable named lightValue,

bool isAwake = true; will create a new true-or-false (Boolean) variable named

with a starting value of 0.

Automatic Threshold values and variables (cont.)

To declare a variable, simply call out its type, then its name, then end with a semicolon.

Optionally, you can also assign a value to the variable at this point, but it is not necessary.

isAwake, with a starting value of true.

~

Data Type

Description

Example

Code

Integer

Positive and negative whole
numbers, as well as zero.

-35,-1,0,
33, 100, 345

int

Floating Point
Decimal

Numeric values with decimal
points.

-.123, 0.56,
3.0, 1000.07

float

String

A string of characters that can
include numbers, letters, or typed
symbols.

“Counter

reached 4”,
“STOP”,

“time to eat

III

string

Boolean

True or False. Useful for express-

ing the outcomes of comparisons.

true, false

bool

End of Section
Things like motor powers and sensor readings are values. Values can be of different types, like
integers or strings. When you need to store them, you can use a variable of the appropriate type
to hold the value for later use. Variables must be declared by assigning them a suitable type

and a name. Names must follow the usual ROBOTC naming rules, and should be chosen so
that you will be able to remember what each variable is supposed to be doing when you read or
troubleshoot your code later.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 3

ariables and-rFunctions

Automatic Threshold Variables and Threshold

Having to reprogram the robot every time the lighting conditions change is not efficient.

In this lesson, we will give the robot the ability to configure itself at the beginning of
every run, with only a little human assistance.

When the program begins, the user will be prompted to “scan” a light surface with the Light
Sensor, and then “scan” a dark surface. The robot will then calculate its own Light Sensor
threshold, wait a few seconds, and proceed as normal.

We'll begin by going through the threshold calculation process manually, and taking note of the
important values that the robot will have to keep track of. Every time a number or value has to be
remembered, make a note.

Scanning light Scanning dark
The robot’s light sensor is first positioned over a Then, the robot’s light sensor is positioned over a
light surface and told to read and store its value dark surface and told to read and store its value

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 4

ariables-and runchions

Automatic Th I"eShOId Variables and Threshold (cont.)

1. Turn on your NXT and navigate to the “View” mode using the gray arrows.

1a. Push the orange button
Turn on the robot by pushing
the orange button. The screen
should display “My Files” when
it is on.

kb

4@b>

48>

1b. Go to the “View” menu 1c. Select “Reflected Light” 1d. Select your port number
Navigate to the “View” menu Select “Reflected Light”, not Select the port number that your
using the arrow buttons. Press “"Ambient Light”. You will get Light sensor is plugged into.

the orange button to go into it. different values otherwise.

2, Record your Light and Dark readings. Record these values.

2a. Record the light value
Place the robot on the light
surface, and record the value
that the Light sensor is reading.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 5

ariables and Funchions

2b. Record the dark value
Place the robot on the dark
surface, and record the value
that the Light sensor is reading.

5. Find the average of the light and dark readings by adding them together and dividing by two.
This thresholdValue will be used for future comparison.

light value + dark value = sum

- 66 + 33 99

sum

/ 2
5b. 99 / 2 = 49,5

= average

Note: Get rid of the decimal number rggggﬂcﬁm’;ﬁ’e"’m“’

5c. rid of the decimal
m — 49 automatically when
using integers.

average = threshold

49 = thresholdValue

5d.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 6

ROBOTC

=)
N w2
4 N

Automatic Th reShOId Variables and Threshold (cont.)

Checkpoint
Four values were either recorded or calculated: light value, dark value, sum, and threshold.

light value + dark value =[sum
Calculate “sum” value

66 + 33 — 99 The sum value is found by adding the

light value and dark value.

/ 2 = |threshold
Calculate average/”threshold” value
The average is found by dividing the sum
99 / 2 = 49 value by 2. The resulting average is the

threshold value.

In order to write a program that will auto-calculate the value of threshold, we will need to create
four variables to store the four values that the calculation needs. To declare each variable, a
name and type must be specified. The name should help you to remember what the variable
does. For this lesson these values will be named:

* lightValue
¢ darkValue
¢ sumValue
¢ thresholdValue

In addition to a name, the type of value (integer, floating point decimal, string, boolean value)
that each variable will hold needs to be determined.

Light Sensors yield values that are whole numbers. So lightValue and darkValue will be “declared”
as integers. Since the sum of two integers is also an integer, sumValue will be declared as an
integer as well. Dividing by two might result in a decimal, but since the threshold is an estimate to
begin with, rounding won't hurt it, and so thresholdValue will also be declared as an integer.

(Declaring Variables \

N
To create a variable, you must “declare” it with two pieces of information:
datatype then name;
Example:
int lightValue; will create a new integer-type variable named lightValue.
\ J
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 7

ROBOTC
A N
\C 54
4 N\
ic Threshold
Avutomatic Threshold variables and Threshold (cont)
7. Place the four variables declared as integers in a new program.
Edit Wiew Robot ‘Window Help
= 7a. Create new program
Select File > New to create a
Open Sample Program blank new program.
Save Chr+s
Save As...
Print... Chrl4+P
Prink Prewview
Page Setup...
e : 2
task main () 7b. Add this code
3 |{ These lines form the main body
4 of the program, as they do in
every ROBOTC program. Leave
5 four lines between curly brackets
6 for the variables.
7
8
9
10 Q)
2 task main()
3 |
4 7c. Add these lines
. : Declare the four variables,
5 int lightValue; lightValue, darkValue, sumValue
6 int darkValue; and thresholdValue as integers.
. . Remember that typographic
7 int sumvalue; errors can keep the program
8 int thresholdValue; from functioning!
9
10 }
End of Section
Four variables have been created to store the four values needed to calculate a Light Sensor
threshold. In the next lesson we will write the remainder of the program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 8

ROBOTC
Variables and Functions
\C 54
4 N
(]
Automatic Threshold Programming with Variables
In this lesson, you will learn how to store Light Sensor values in the variables you created, and
how to use a Touch Sensor as a user interface button.
The robot will take the first Light Sensor reading over a light surface when the Touch Sensor is
pressed, then take a second reading over a dark surface when the Touch Sensor is pressed a
second time.
. Existing program
2 task main () Your program should
3 { currently look like this.
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 }
First, we'll configure the Light and Touch Sensors.
F\ Light Sensor
Touch Sensor
1. Open the Motors and Sensors Setup menu.
File Edit Wiew Window Help
I 0O = n Compile and Download Program FS
= Battery & Fo Compile Program F7
- € Constructs Dehugger
MET Brick 4
Dl akE, T »
1. Open “Motors and Sensors Setup”
5 Undefined Ent — Domrioad Frmmmare 7 Select Robot > Motors and Sensors Setup to
- User Defined open the Motors and Sensors Setup menu and
] configure the sensors.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 9

| | ROBOTC

s L ,J, ™
‘ariables and Funclions

N/
N

Automatic Threshold Programming with Variables (cont.)

2. ROBOTC will ask if you want to save your program. Click Yes, then save the program
as “Autothreshold”.

RobotC

2a. Select “Yes”
Save your program

Save changes to SourceCode? when promp1ed .

2b. Name the program
Name the program

=]][Cancel]

My Computer ‘ “Autothreshold”.
. File: namme: Autothreshold) v | ([Save] i—— 2c. Save the program
e - < s e P - | [concel] Press Save to save the
y Metwor ave az type: ez [".ree”.e2" opp.” nge:” b nghl v ancel program with the new

name.

3. Select the A/D Sensors tab, and make Port 1 the Touch Sensor, named touchSensor,
and Port 2 the Light Sensor, named lightSensor.

Motors and Sensors Setup E'
Motord | 4/D Sersors) 3a. Select “A/D Sensors” tab
Indes - o Selecting this tab allows you view your
B ~
51 G;uchSensm (Touch 7] sensors set up menu.
52 | Mo Senzor b
53| | No Sensor a 3b. Set sensor type
sa [No Sensor 3 !Iden1|f):,1he Sensor Type as a
Touch” sensor.
3c. Name the sensor
Name the Touch Sensor on
port ST “touchSensor”.
[u]] [Cancel] [Apply] [Help]
Motors and Sensors Setup E|
Matars | AD Sensors |
Irdes Mame Type
51 |t0uchSensor | Touch v
y -
52 @ightSensor) (| Light Active v 3d. Set sensor type
s3| | | TYE— 3 !f;l(_anhfy fh'e S,:snsor Type as a
Light Active” sensor.
54 | |No Sensor v
3e. Name the sensor
Name the Light Sensor on port
S2 “lightSensor”.
/- N\
((_ox || —sares—-H—sppt—T-F—Heb—] 3f. Click OK
N 4

. /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 10

ariables and Function
-
Automatic Threshold Programming with Variables (cont.)
The next step is for the robot to take the first Light Sensor reading over a “light” surface when the
Touch Sensor is pressed. Then, take the dark reading on the next Touch Sensor press.
. /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 11

ROBOTC
A N
N 94
4 N\
(]
Automatic Threshold Programming with Variables (cont.)
4, The robot should wait for the Touch Sensor to be pressed. A while() loop is used to check the
touchSensor value to watch for a press. As long as the Touch Sensor isn’t pressed,
(SensorValue (touchSensor)==0) remains true, and the robot does nothing.
2 task main ()
3 {
4
5 int lightValue;
6 int darkvalue;
7 int sumValue;
8 int thresholdvalue;
9
10 while (SensorValue (touchSensor)==)]7 4. Add this code
1 { This while () loop idles
(i.e. runs an empty {} code
12 } block) while the Touch
13 Sensor is not pressed.
14
5. After the Touch Sensor is pressed, record the Light Sensor’s value to the variable
lightValue. Assign the value of the sensor to the variable. LightSensor =
SensorValue (lightSensor) Note: A single equals sign means, “set to the value of”.
2 task main ()
3
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
I
13
14 [lightValue:SensorValue (lightSensor) ;)— 5. Add this code
15 This line puts the !_igh’r Sensor’s value
into the variable lightValue.
16 3
- %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 12

ROBOTC
Pl N
N 5
4 N
(]
Automatic Threshold Programming with Variables (cont.)
6. Next, the robot records the dark value. Either retype the wait-for-press loop, and the storing
of the value manually, or just highlight and copy the code you just wrote, (starting with “while”
and ending with the semicolon) and paste another copy of it below. In this second recording,
of course, you want to record the value to the dark Value.
2| task main ()
3 |
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
.
13
14 lightValue=SensorValue (lightSensor) ;
15
16 while (SensorValue (touchSensor)==0) 6a. Add this code
17 This while () loop idles while the
{ Touch Sensor is not pressed, just
18 } like the previous one.
19
20 CdarkValuezSensorValue (lightSensor) ; 6b. Add this code
9 This line puts the Light Sensor’s value
1 into the variable “darkValue”.
e
Checkpoint
Check to see if the program is working. It is almost always better to write code in small bits
and test often, rather than waiting to test a long section of code in which many mistakes could
be hiding.
7. Compile, Download and run your program.
0: RobotC - Autothreshold *
File Edit view RGEsES window Help
= Compile and Download Program FS 7. Compile and Download
Battery & Pow REEOMPIIE Frogram i ESensors touch3ens RObO* > Compile Gnd
CConstructs | Debugger t3ensors lightSens Download Program
Display LICK to edit 'wiza
Maokars T Brick Y Hing)
Sensors Platfarm Type 3
?IDI_:::S Mokors and Sensors Setup l;gi&:?ﬁ;?
User Defined | Download Firmears sumialue;
=] Inc-thresholdValue;
_ %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 13

ariables and Fu N
/
(]
Automatic Threshold Programming with Variables (cont.)
8. Run the program. Put the Light Sensor over a light surface. Press the Touch Sensor.
Keep an eye the robot... it may not do what you expect!
9. The program seems to end immediately when the Touch Sensor is pressed.
That’s not what we wanted!

End of Section

Something is wrong with the program. In the next lesson, the debugger will be used

to fix the problem.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 14

Q
0
(7]

>

1 Fu

-
o

N

Automatic Threshold variables and the Debugger

In this lesson, the Debugger windows will be used to determine why the program is not
running properly. The debugger can be used to “freeze time” for the robot and allows you to

step through the program at whatever speed you want.

1. Something is obviously wrong with the program. Download the program again, but this time,
make sure the robot stays plugged into the computer, and watch the code window.

&3 RobotC - autothreshold *

N EETD
- |o=m

1a. Plug the robot back in
Robot has to be plugged into the
computer, via USB, to be able to
view the code window.

N e laltio]

[#)- Battery & Po = - Zensors touchSensd
m C Construcks Debugger Jensors lightSensd
[Display LICK to edit 'wizay
m Matars T Brick, P hing)

&-Sensors Platform Type vl

- Sound Motors and Sensars Setup jontieus:

[#)- Timing arkValue;

[User Defined Diownload Firrmware suriValue;

1b. Compile and download
Select Robot > Compile and
Download Program. The option
may just read “Download
Program”, which is fine also.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 15

ROBOTC

‘ariables and Fune

cfions

J

N

Automatic Threshold variables and the Debugger (cont.)

2, After you have downloaded the program to your robot, fix the problem by open up the
Debugger, then select both the Global Variables and the NXT Devices options so both these

windows are visible.

Q RobotC - Autothreshold

oy =]

Batkery & Pow

Matars
Sensors
Sound
Timning

User Defined

[e

File Edit Wiew RG0S Window Help

Dawnload Prograr FS
Recompile Program F7

Display Debug Windows 3

AT Brick »

FlatForm Type 3
Motors and Sensors Setup

Dowrload Firmwate

st tSensors lightSensor
t tiensors touchiensor

| '/CLICK to edit 'wizard'

k main()

nt lightWalue:;

nt darkValue:

nt sumialue:

nt thresholdValue:

& RobotC -
File Edit Wiew GGG Wwindow Help

Autothreshold

0O = H Download Program
7Battery 2 Fou Recompile Program

C Constructs Debugger

Display

Maotars

SEMSOrs NXT Brick,

- Sound

i .DL!n Flatform Type

Timing Mot ds Seb
User Defined obors and Sensors Setup

Download Firmware

FS

7 t t3ensors light3ensor
t tIensors touch3ensor

nt lightWalue:;

nt darkValue:;

nt sumialue;

nt thresholdValue:

D

while [(SensorValue(touchSe

L

Global Yariables £ 'wizard'
N MAT Devices J

N

2a. View Debugger
Select Robot > Debugger to open
up the Program Debug window.

2b. View Debugger Windows
Select Robot > Debug Windows
and select both Global Variables
and NXT devices if they are not
already checked.

Checkpoint
The screen should look like the sample below with three windows visible: Program Debug,

Global Variable and NXT Device Control Display.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 16

Variables and Funcfions

Automatic Threshold variables and the Debugger (cont.)

3. Run the program. Observe what happens when you push the Touch Sensor.

3. Push Touch Sensor

Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Checkpoint

The button was pressed once, and the program shot straight to the end. You can tell the program
is finished because the Start button on the Program Debug window is highlighted. (If the program
was still running, the Suspend button would be highlighted.)

Program Debug

2400
Debug Status Refrezh Rate

Suspend

4, Run the program again, but this fime use the Program Debug window to “freeze” time and
step through the program while suspended. To do so, press the Suspend button, then the
Step button.

Program Debug

2400
Debug Status Refresh Rate

() [cicmtmiolal | Ooce |
Start e S|

4a. Press Start button
Press the Start button to get the
program started.

Debug Status
L Stap I[Suspend])[Stepr } T |

Corntinuous|

4b. Press Suspend bution

Press the Suspend button on the
Program Debug window to “stop” time
and leave the program right where it is.

Program Debug

2400
Debug Status Fiefrezh Rate

[Stop]LHesume]([Step])—%— 4c. Press Step button
w [Cmtinuousl Press the Step button to go to the

next line of code.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold « 17

RO

Variables and Functions

N\

N

Automatic Threshold variables and the Debugger (cont.)

5. Press the Touch Sensor and observe in the NXT Device Control Display that it is pushed and
working properly.

5a. Push Touch Sensor
Pushing the Touch Sensor allows
the program to move forward
out of the while () loop.

Fiead % alues from NT
Mator] Speed] PID[Made [Fiequlate [Run State] Tach User| Tach Mave] Tach Limit] Tach Tatal
A a 0/ OFF(Float) 0 none Idle a 0 1} 1]
B 1] 0/ OFF(Float] 0 rione Idle 1] 0 1} 1]
C a 0/ OFF(Float] 0 Hiohe Idle a 0 1} a
Sensor | Type [Mode | \-"aIgEL Raw| |Variable Walue Reset Devices
51 |Touch modeBoc g/‘ 1801 —SvneTop vrichl 5b. Observe the Touch Sensor
52 | Light Active modePen 426 | Spnc Tun 0 The value of the Touch Sensor, 1 ,
53 |FawWalue modeR ay 1023 1023) | EBattery oI e
means that it is pr .
54 | FawWalue modeR an 1023 1023) | Sleep Time B0 min eans tha sp essed
Yolume 2 90

Since you have suspended the program, the robot’s program remains “frozen” at the first while()
loop (where the yellow line appears in the code). The NXT Device Control window on your PC
screen, however, remains operational, and will cantinue to report the value of the sensors.

2 task main ()

3

4

5 int lightValue;

6 int darkValue;

7 int sumValue;

8 int thresholdValue;

9

10 (while (SensorValue (touchSensor) == Di Line about to run

11 T The program will run this '

step when the Step button is

12 } pressed again.

13 Because the line is a while
14 lightValue=SensorValue (lightSensor) ; '(gggaii:igvri')';‘:g';:‘;;:e
15 whether to loop, or move on.
16 while (SensorValue (touchSensor)==0)

17 {

18 }

19
20 darkValue=SensorValue (lightSensor) ;
21
22)

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 18

Variables and Funcfions
e N
(]
Automatic Threshold variables and the Debugger (cont.)
6. While continuing to hold the Touch Sensor in the pushed position, click the Step button on the
Program Debug control panel to allow the program to move past the while() loop.
6a. Push the Touch Sensor
Hold the Touch Sensor in the
pushed position while pressing the
Step button.
Program Debug X
2400
[Debug Status Fiefresh R ate
[Stop | [Resume)([step |}——nee] 6b. Press Step button
Cantinuous| Press the Step button while pushing
g the Touch Sensor to allow you to go
to the next step of the code.
Since the Touch Sensor value is not O at the time the while loop checks, the program moves
past the loop to the next step. The next line turns yellow now to indicate that this command is
about to be executed.
2 task main{()
3
4
5 int lightValue;
6 int darkValue;
7 Jl'nt sumvalue; Line that was run
8 int thresholdValue; When you pressed Step, this line
9 was run. The (condition) was
- False because the touchSensor
10 (whlle (SensorValue (touchSensor)==0)) value was 1 (and not 0), so the
11 { program exited the loop and
moved on.
12
13
14 (lightValue=SensorValue (lLightSensor) ,)7 Line about fo run
15 The program will run this
. li hen the Step button i
16 while (SensorValue (touchSensor)==0) F;?:S:;dezgqien, ep bution s
17
18)
19
20 darkValue=SensorValue (lightSensor) ;
21
22
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 19

Veariables and Functions

Automatic Threshold variables and the Debugger (cont.)

7. Find the variable lightValue in the Global Variables window. Push the Touch Sensor. Keep it
pushed in while pressing the Step button. The Light Sensor’s value when the Step button was
first pressed is now stored in the variable lightValue.

7a. Push the Touch Sensor

Hold the Touch Sensor in the pushed
position while pressing the

Step button.

Program Debug

2400
Debug Status Fiefresh Rate
|

[Stop] LHesume]([Step]) [o 7b. Press Step button
Press the Step button while pushing

Continuous|
L] the Touch Sensor to enable the

Global ¥ariables program to move to the next line

Yariable of code.
unused
1| unused
2 nused
(2 main: light'alue B 7c. Stored Variable
[main: darkvalue The lightValue variable now
5| main: sum'/alue equals the value of the Light
S il igdetielue Sensor when the Touch Sensor

was first pushed, as shown in the
Clobal Variables window.

13

14 QightValue=SensorValue (lightSensorF Line that was run

15 When you pressed Step, this line

- was run, and stored the value of

16 Q\zhlle (SensorValue (touchSensor)==0) the Light Sensor in the variable.

17 {

18 }
Line about fo run

19 The program is now ready to

20 darkValue=SensorValue (lightSensor) ; run this next step when Step is

21 pressed again.

29 Because the line is a while loop,

} it will evaluate the (condition)
and decide whether to loop, or
move on.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 20

Variables and Functions

Automatic Threshold variables and the Debugger (cont.)

8. While continuing to hold the Touch Sensor in, press the Step button several times to step
through the rest of the program.

8a. Keep the Touch Sensor pressed
Hold the Touch Sensor in the pushed
position while pressing the Step button.

Program Debug
2400
Debug Status Fiefresh Rate
[Stop] LHesume]([Step]) [o ! 8b. Press Sfep button
; Press the Step button several times
Continuous]
L] while pushing the Touch Sensor
to step through to the end of the
program.
13
14 (lightValue=SensorValue (lightSensor) 37 Line that was run
15 When you pressed Step, this line
) was run. The (condition) was
16, while (SensorValue (touchSensor)==0) False because the touchSensor
17 { value was 1 (and not 0), so the
program exited the loop and
18 } moved on.
19
20 (darkValue=SensorValue (LightSensor) ,)7 8c. Press Step button again
21 The program moves to the next
line of code, making the variable
22} darkValue equal to the Light
Sensor value the moment the
Touch sensor was pressed.
13
14 lightValue=SensorValue (lightSensor) ;
15
16 while (SensorValue (touchSensor)==0)
17 {
18 }
19
20 darkValue=SensorValue (lightSensor) ;
21

22 }()— 8d. Press Step button again

The program moves to the next
line of code, the last curly bracket,
and the program ends.

_ /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 21

ROBOTC
- I

_
N

N/

Automatic Threshold variables and the Debugger (cont.)

Checkpoint
Do you see what the problem is? When the Touch Sensor is held down, the program shoots
straight through to the end of the program without stopping.

Why does it do this? Because we told it to. When the Touch Sensor was pressed, it took the
program out of the first while loop. This was what we intended. But then, it quickly set the
lightSensor variable, and then waited for the button to be pressed... which it still was, from the
first press! The program immediately jumped past the second while loop. This is what we said,
though certainly not what we wanted!

With the Step function, you could see this happening one step at a time. At normal speed, all this
happens before you can take your finger off the button from the first press!

9. Place a command between the while() loops telling the robot to wait for 1 second before
looking for the Touch Sensor value again. This allows the human operator enough time to
push, and release, the Touch Sensor.

2 task main{()

3

4

5 int lightValue;

6 int darkValue;

7 int sumValue;

8 int thresholdValue;

9

10 while (SensorValue (touchSensor)==0)

11 {

12 }

13

14 lightValue=SensorValue (1lightSensor) ;

15

16 @aithsec (1000) ;J ?e.lfgiit’:l:o‘t:?:aaitforl
17 second before it starts looking
18 while (SensorValue (touchSensor)==0) for the Touch Sensor again.
19 {

20 }

21

22 darkValue=SensorValue (lightSensor) ;

23

24

End of Section

In this lesson, the debugger was used as a tool to diagnose why a program was not working
properly. Stepping through the commands in a program one at a time allows you to slow down
the program so the problem can be found.

. /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 22

Variables and Functions
4 N
(]
Avutomatic Threshold threshold calculations
About half of the autothreshold calculator program is complete. In the previous lessons the
Light and Dark values were recorded and stored in variables. In this lesson, you will use them
to calculate the threshold value for the robot’s environment.
Checkpoint
This is what the current program should look like.
2| task main ()
3 |
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
1M {
-
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 waitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
200
21
22 darkValue=SensorValue (lightSensor) ;
23
24 |}
. %

© Carnegie Mellon

Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 23

ROBOTC
Pl N
N 5
4 N\
(]
Automatic Threshold threshold calculations (cont)
1. Starting at the end of the program, just before the closing brace of the task main pair, set the
sumValue equal to the sum of lightValue and darkValue. The variable sumValue is now being
used to store the result of lightValue plus darkValue.
2 task main()
3 {
4
5 int lightValue;
6 int darkvValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12
13
14 lightValue=SensorValue (lightSensor) ;
15
16 waitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
20 }
21
22 darkValue=SensorValue (lightSensor) ;
23
24 Csum\/'alue = lightVvalue + darkValue;j 1. Add this code
25 Add lightValue and darkValue
together, and store the result in
26 |} the variable sumValue.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold * 24

| ROBOTC
pasl L N
ariables and Functions
NC /
4 N
[]
Automatic Threshold threshold caicvlations (cont)
2, Set thresholdValue equal to sumValue divided by two. The variable thresholdValue now stores
the threshold value calculated from the readings of light and dark surfaces.
2 task main()
3
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 }
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 walitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
20 }
21
22 darkValue=SensorValue (lightSensor) ;
23
24 sumValue = lightValue + darkValue;
25 G:hreshold\/’alue = sumValue/Z;) 2. Add this line of code
26 Divide sumVolu.e by 2, qu
store the result in the variable
27 } thresholdValue.
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 25

ROBOTC

Variables and Functions

N\

N

Avutomatic Threshold rthreshold calculations (cont.)

3. Save the Autothreshold program.

3 RobotC - autothreshold
N Edit Wiew Robot ‘Window Help

New -
(Open and Compile

Auto Cconst LIensors touchien

Luto const t3ensors light3en
Euto TTCLICE to edit Wiz 5. Save program

e 1 task maini) File > Save, to save your current
Print.. P 2 ¢ autothreshold program.
. 8 3 int lightWValue;
Print Preview i
Paas Setu 4 int darkValue:
: 'gtS ; Pie 5 int suniValue:
fn. setup... 5 int thresholdValue:

4. Compile and download your program.

File Edit View Window Help

O E 4. Compile and download
Battery & Po & tZensors touchiens Robot > Complle and
CConstructs | pebugger E3ensors lightSens Download Program
Display LICKE to edit 'wiza
Matars MET Brick P Ling)
Sensors Flatform Twpe [
S Motors and Sensors Sebuy f ey
Timning i arkvalue;

[#- User Defined Download Firmveare suniValue:

'l =] Tt thresholdValue;
i

5. Step through the program using the debugger, pushing the Touch Sensor at the appropriate
times. Observe the variables window as sumValue stores the sum of lightValue and darkValue;
and thresholdValue stores sumValue divided by two.

Program Debug

2400
[rebug Status Fefresh Rate

’ Stop][Hesume]([Step]) []

5a. Press Step button

Press the Step button in the
Program Debug window to step
through the program.

5b. Push the Touch Sensor

Push the Touch Sensor over light
and dark surfaces at the appropriate
times when you step through

the program.

5c. Observe variables

Observe the variables window as
lightValue, darkValue, sumValue and
thresholdValue are calculated.

Checkpoint
The threshold is now being calculated as the average of the other two values. The debugger
window shows the values of all the variables as they are collected and/or calculated.

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold

° 26

ROBOT

Variables and Functions

N

Save
Save fAs...

Prirk...
Print Prexview
Page Setup...

& RobotC - Autothreshold
=M Edit Wiew Robot Window Help

Open and Compile
Open Sample Program

6. Open your LineTrackTimer program.

Lock x| I3 FobolC Frograms
5] AutoTheeshold
19 7| ForwardDerk
My Recent | (] Foewarduniidak
Dincumants 5] Labryrinth
— (] Labyrireh#ID
L;Jl] LabyrirahPreciss
Deshbop _ LabrvrirdhSynich
LineTracki
5] LneTrack2
=74 [Irmtracking
My Drocumants et apFrg e
Lina TripckR ot ation
: i T ol Tty
99
. ratrvareg Forerd

Automatic Threshold threshold calculations (cont)

6a. Open and Compile
Select File > Open and Compile
to be prompted to open a file.

6b. Select the program
Select LineTrackTimer from your
previously saved programs, then
double click to open it.

N

while

ClearTimer (T1) ;

motor [motorC

(timel [T1]

21=0;

3000)

7. Copy the code highlighted below, from lines 5 to 29 of the LineTrackTimer program. Be
careful to copy exactly this portion of the program.

3: RobotC - linetrack-timer

e e O e O e

File B8 ¥iew Robot Window Help

Cut

Copy Configuration o Clipboard

Find
Find Mext
Find and Replace

Chrl+x

Chrl+F
F3
Chrl+H

—— 7b. Select Copy

7a. Highlight code
Highlight exactly this
section of code in
the LineTrackTimer
program.

Select Edit > Copy
to copy the
highlighted code.

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold * 27

\ ROBOTC
A L N
ariables and Functions
\C 54
4 N\
°
Avutomatic Threshold rthreshold calculations (cont.)
8. Reopen the autothreshold program.
G RobotC - linetrack-timer
5-0 Edit View Robot ‘Window Help
Ctrl+h
Open and Campile T EEREET 8a. open and compile
Oper Sample Progra //#1ICLICE to Select File > Open and Compile
Save Chrl+s task main() to open a file.
Save As... i
Save in: | 1 Training Samples
r 2 8b. Select the program
{ Select the authothreshold
My Recent program from the previous
saved programs.
9. Paste the code you copied between “sumValue/2;"” and the concluding curly brace.
2 task main ()
3 {
4
5 int lightValue;
6 int darkvValue;
7 int sumValue;
8 int thresholdvalue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 }
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 waitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0) B ot e Aniothreahald
]9 { File Ws[# Yiew Robot Window Help
20 } O
21 E
, T Cut Chrl+%
22 darkValue=SensorValue (lightSensor); |®{ g .
23 | e
. : Copy Configuration to Clipboard
24 sumValue = lightValue + darkValue;]
:
25 thresholdvValue = sumValue/2; | Find .
Find Mext F3
26 AR .
27 || 9. Paste the copied code
28 Place the cursor right before the
last curly brace and select Edit >
Paste to paste the code.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDST

ORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 28

N

| ROBOTC

P L ~
ariables and Functions

\L .

4 N

Automatic Threshold threshold calculations (cont)

10. Change the condition of the “borrowed” if-else statement so that instead of comparing the
light sensor value to a set number, it checks it against the “thresholdValue” variable calculated
in the Autothreshold program.

20

27 ClearTimer (T1) ;

28

29 while(timel[T1] < 3000)
30 ¢

31

32 if (SensorValue (lightSensor) <Cthreshold\/alue))— 10. Modify code

33 { Replace the
condition, which had

34 contained a number,

_) with the variable
35 motor [motorC] = 0; “thresholdValue”, that

36 motor [motorB] = 80; holds the calculated
37 threshold value.

38 }

39

40 else

41 {

42

43 motor [motorC]
44 motor [motorB] = 0;
45

46 }

47

48 |}

|
©
o
<o

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 29

ROBOTC

pasl ‘L N
‘ariables and Functions
NC /
4 N
[]
Automatic Threshold threshold calculations (cont,)
Checkpoint
Your final program should look like the one below, and on the following page.
2 task main ()
3 {
4
5 int lightValue;
6 int darkValue;
7 int sumValue;
8 int thresholdvValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 }
13
14 lightValue=SensorValue (1lightSensor) ;
15
16 walitlMsec (1000) ;
17
18 while (SensorValue (touchSensor)==0)
19 {
20 }
21
22 darkValue=SensorValue (lightSensor) ;
23
24 sumValue = lightValue + darkValue;
25 thresholdValue = sumValue/2;
26
27 ClearTimer (T1) ;
N %

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 30

ROBOTC

ables and Furl.

L]

fions

N/

N

Avutomatic Threshold rthreshold calculations (cont.)

Checkpoint

Your final program should look like the one below. (continued)

A

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 }

while (timel[T1] < 3000)

{

if (SensorValue (lightSensor)

{

motor [motorC]=0;

motor [motorB]=80;

else

motor [motorC]=80;

motor [motorB]=0;

4

motor [motorC]

=0
motor [motorB]=0;

4

< thresholdValue)

N

/

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Automatic Threshold ¢ 31

Variables and Functions
4 N
[]

Automatic Threshold rthreshold calculations (cont.)

11. Compile and Download to your robot.

<3 RobotC - Autothreshold *

File Edit Wiew

bDEE 11. Compile and download

[+ Battery & Po Jensors touch3ens Select Robot > Compile and

§-CConstructs | Dehugger Sensors lightSens Download Program to run your

[Display ICE to edit 'wiza robot.

--Motors MAT Brick. 3 Ling)

--Sensors

- Sound

--Timing

- User Defined

Checkpoint

Test your program. Find a line you can track in a place where you can turn the lights on and

off. Run your program and press the Touch Sensor once with the Light Sensor over light, to read
the value of the light surface. Move the robot so that it is in line tracking position, with the Light
Sensor over the line.

Pressing the Touch Sensor for the second time should not only read the dark value and calculate
the threshold, but should also make the robot track the line for three seconds. Now turn the lights
off, and run the program again. The robot should still be able to track the line!
Test program with lights on Test program with lights off
Show the robot what the light surface looks Change the light in the room and test the
like, then the dark one, and it should track the program again. The robot should again be
line for three seconds. able to track the line, demonstrating its ability to

calculate a threshold in different conditions.
. J

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 32

| ROBOTC
A L N
ariables and Functions
N 94
4 N\
(]
Automatic Threshold threshold calculations (cont)
The program works, but does need to be made more user-friendly. Right now, the robot will not
tell you what to do, or when. Place simple instructions in the code to solve this problem.
12. While the robot is waiting for the Touch Sensor to be pushed, program the robot to display
a message telling a user to press the button over a light surface. This command makes the
NXT display, on its screen, the words “Read Light Now” at position 0, 31 (that’s the left edge,
about halfway down). Place a similar line in the second while() loop that does the same
thing, but says “Read Dark Now”.
2 task main ()
B {
4
5 int lightValue;
6 int darkvalue;
7 int sumValue;
8 1int thresholdValue;
9
10 while (SensorValue (touchSensor)==0)
11 {
12 —(nxtDisplayStringAt (0, 31, “Read Light Now”) ;]
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
17 waitlMsec (1000) ;
18
19| | while (SensorValue (touchSensor)==0)
20 | | {
21 [nxtDisplayStringAt (0, 31, “Read Dark Now”) ,]
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 | sumValue = lightValue + darkValue;
27 | thresholdvalue = sumValuel/2;
28
—— 12a. Add this code —— 12b. Add this code
Tells the NXT to display, on its Tells the NXT to display, on its
screen, the words “Read Light screen, the words “Read Dark
Now” at the beginning of the Now” after the Touch Sensor has
program. been pushed and released once.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 33

ariables and Functions

Automatic Threshold rthreshold calculations (cont.)

13. Compile and Download your program to the robot.

3 RobotC - Autothreshold *

File Edit View RGE=Ea ‘Window Help
R = Compile and Dawnload Program FS 13. Compile and Download
[#- Battery & Po SECORRIE Lo i Jensors touchiens Select Robot > COI"an|e and
- C Constructs | Debugger Sensors light3ens Download Program.
(- Display LICK to edit 'wiza
.. Matars AT Brick, Y Ling)
G- Sensors Platfarm Type vl
il Sound Mokors and Sensors Sebuy janeva s
bt Tirming i arkValue;
[+ User Defined Download Firrmsare =umValue;
I =) AT thresholdValue:
o

14. Test the program. After the program starts, the message, “Read Light Now” should appear
on the NXT screen. After the Touch Sensor is pushed and released, the NXT screen should
display the message, “Read Dark Now.” As you did previously, place the robot so that its
Light Sensor is directly over the line, and its chassis roughly parallel with the line so that it is
in good position to track it. When you press the button, the threshold should be calculated,
and the robot should track the line for three seconds.

14a. Read light 14b. Read dark 14c. Autothreshold line track
When the NXT displays “Read Light When the NXT displays “Read Dark The robot should track a line
Now”, record the light surface value. Now”, place the robot in position for three seconds and end the
to track a line. program.
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold 34

| ROBOTC
A {’ N
ariables and Functions
N 54
4 N\
(]
Avutomatic Threshold rthreshold calculations (cont.)
End of Section
This is the complete code for the Automatic Threshold program.
2 task main ()
3 {
4
5 int lightValue;
6 int darkvValue;
7 int sumValue;
8 int thresholdvalue;
9
10 while (SensorValue (touchSensor)==0)
1 {
12 nxtDisplayStringAt (0, 31, “Read Light Now”);
13 }
14
15 lightValue=SensorValue (lightSensor) ;
16
17 waitlMsec (1000) ;
18
19 while (SensorValue (touchSensor)==0)
20 {
21 nxtDisplayStringAt (0, 31, “Read Dark Now”);
22 }
23
24 darkValue=SensorValue (lightSensor) ;
25
26 sumValue = lightValue + darkValue;
27 thresholdvalue = sumValue/2;
28
29 ClearTimer (T1) ;
30
31 while (timel[T1] < 3000)
32 {
nn
- /

© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢ 35

1 Fu

Q
o
()
>

-
o

Avutomatic Threshold rthreshold calculations (cont.)

if (SensorValue (lightSensor)

< thresholdValue)
{

motor [motorC]=0;
motor [motorB]=80;

else

motor [motorC]=80;
motor [motorB]=0;

motor [motorC]
motor [motorB]

4

4

=0
=0

The robot now tracks a line with its own calculated threshold, and can advise users what to do,
and when.

N

/
© Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797 Automatic Threshold ¢« 36

